Normalized defining polynomial
\( x^{14} - 4 x^{13} + 24 x^{12} - 17 x^{11} + 87 x^{10} - 1171 x^{9} + 2691 x^{8} + 3707 x^{7} + 13199 x^{6} + 593 x^{5} + 101717 x^{4} + 243329 x^{3} + 487049 x^{2} - 1106911 x + 1351337 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-38011043274806994636408671=-\,13^{7}\cdot 347^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{13} a^{9} + \frac{3}{13} a^{8} + \frac{3}{13} a^{6} - \frac{4}{13} a^{5} - \frac{1}{13} a^{3} - \frac{3}{13} a^{2}$, $\frac{1}{247} a^{10} + \frac{1}{247} a^{9} + \frac{46}{247} a^{8} - \frac{49}{247} a^{7} - \frac{49}{247} a^{6} + \frac{8}{247} a^{5} - \frac{66}{247} a^{4} - \frac{66}{247} a^{3} - \frac{59}{247} a^{2} - \frac{6}{19} a$, $\frac{1}{247} a^{11} + \frac{7}{247} a^{9} + \frac{2}{13} a^{8} - \frac{3}{13} a^{6} + \frac{6}{19} a^{5} + \frac{45}{247} a^{3} + \frac{5}{13} a^{2} + \frac{6}{19} a$, $\frac{1}{26429} a^{12} + \frac{4}{2033} a^{11} + \frac{51}{26429} a^{10} + \frac{693}{26429} a^{9} - \frac{12796}{26429} a^{8} - \frac{8882}{26429} a^{7} - \frac{2325}{26429} a^{6} - \frac{249}{1391} a^{5} + \frac{12455}{26429} a^{4} + \frac{10399}{26429} a^{3} - \frac{1530}{26429} a^{2} - \frac{921}{2033} a + \frac{50}{107}$, $\frac{1}{9609956244181112985624522875201} a^{13} - \frac{165777206245200818290701045}{9609956244181112985624522875201} a^{12} - \frac{11324580882538856731959865160}{9609956244181112985624522875201} a^{11} - \frac{12299073061410085921173147252}{9609956244181112985624522875201} a^{10} - \frac{75194895682912232714551727532}{9609956244181112985624522875201} a^{9} + \frac{25877167127135225647121997682}{9609956244181112985624522875201} a^{8} + \frac{79842753314390529914122651924}{505787170746374367664448572379} a^{7} + \frac{2903592558383948894703266066216}{9609956244181112985624522875201} a^{6} + \frac{4062130740350242282343634247765}{9609956244181112985624522875201} a^{5} + \frac{4626402295262858942005041918231}{9609956244181112985624522875201} a^{4} + \frac{2230704072971178608340820998822}{9609956244181112985624522875201} a^{3} - \frac{2207604196492913525136116041481}{9609956244181112985624522875201} a^{2} - \frac{44240068101762124995589737565}{739227403398547152740347913477} a - \frac{19065622215670036522680319063}{38906705442028797512649890183}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1766053.09152 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-4511}) \), 7.1.91794884831.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.91794884831.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 347 | Data not computed | ||||||