Normalized defining polynomial
\( x^{14} - 4 x^{13} + 18 x^{12} + 135 x^{11} - 819 x^{10} + 3672 x^{9} + 318 x^{8} - 44720 x^{7} + 262353 x^{6} - 807128 x^{5} + 1770111 x^{4} - 2873985 x^{3} + 3480188 x^{2} - 3274534 x + 2105941 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-377987015999056008227829767=-\,6263^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $6263$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{19} a^{10} + \frac{3}{19} a^{9} - \frac{9}{19} a^{8} - \frac{7}{19} a^{7} - \frac{8}{19} a^{6} - \frac{7}{19} a^{4} - \frac{9}{19} a^{3} + \frac{6}{19} a^{2} - \frac{8}{19} a$, $\frac{1}{19} a^{11} + \frac{1}{19} a^{9} + \frac{1}{19} a^{8} - \frac{6}{19} a^{7} + \frac{5}{19} a^{6} - \frac{7}{19} a^{5} - \frac{7}{19} a^{4} - \frac{5}{19} a^{3} - \frac{7}{19} a^{2} + \frac{5}{19} a$, $\frac{1}{139973} a^{12} - \frac{3298}{139973} a^{11} + \frac{3536}{139973} a^{10} + \frac{33338}{139973} a^{9} - \frac{27671}{139973} a^{8} - \frac{49735}{139973} a^{7} + \frac{65632}{139973} a^{6} + \frac{52662}{139973} a^{5} + \frac{46919}{139973} a^{4} - \frac{7010}{139973} a^{3} - \frac{68616}{139973} a^{2} + \frac{7689}{139973} a - \frac{739}{7367}$, $\frac{1}{9508127752457975972743941946705} a^{13} - \frac{5327739611243661740045873}{1901625550491595194548788389341} a^{12} - \frac{73054490652852291646759981717}{9508127752457975972743941946705} a^{11} + \frac{175620300911157858618338048772}{9508127752457975972743941946705} a^{10} - \frac{1052032118547764457090937726801}{9508127752457975972743941946705} a^{9} + \frac{1767736290440420123385018038878}{9508127752457975972743941946705} a^{8} - \frac{897764229259357924918673224492}{1901625550491595194548788389341} a^{7} + \frac{25436449073038419420413035776}{100085555289031326028883599439} a^{6} - \frac{3118433431769294828331469252562}{9508127752457975972743941946705} a^{5} + \frac{2061598084991338702549158429339}{9508127752457975972743941946705} a^{4} - \frac{2521570402409834590250551369298}{9508127752457975972743941946705} a^{3} + \frac{1447789957956196835514777825728}{9508127752457975972743941946705} a^{2} + \frac{267161842398179271197163421014}{1901625550491595194548788389341} a + \frac{145257712965499687824785003974}{500427776445156630144417997195}$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4447835.41361 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-6263}) \), 7.1.245667233447.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.245667233447.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 6263 | Data not computed | ||||||