Normalized defining polynomial
\( x^{14} - 7 x^{13} + 49 x^{11} + 238 x^{10} - 623 x^{9} - 497 x^{8} + 1135 x^{7} + 15785 x^{6} + 2002 x^{5} + 16814 x^{4} + 4662 x^{3} + 298305 x^{2} + 401044 x + 766979 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3733376216303663794289149571=-\,7^{24}\cdot 11^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(539=7^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{539}(1,·)$, $\chi_{539}(386,·)$, $\chi_{539}(197,·)$, $\chi_{539}(232,·)$, $\chi_{539}(43,·)$, $\chi_{539}(428,·)$, $\chi_{539}(78,·)$, $\chi_{539}(463,·)$, $\chi_{539}(274,·)$, $\chi_{539}(309,·)$, $\chi_{539}(120,·)$, $\chi_{539}(505,·)$, $\chi_{539}(155,·)$, $\chi_{539}(351,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{589} a^{12} - \frac{117}{589} a^{11} + \frac{271}{589} a^{10} + \frac{94}{589} a^{9} + \frac{15}{589} a^{8} + \frac{256}{589} a^{7} + \frac{288}{589} a^{6} + \frac{103}{589} a^{5} + \frac{60}{589} a^{4} - \frac{16}{589} a^{3} + \frac{2}{19} a^{2} - \frac{245}{589} a + \frac{3}{589}$, $\frac{1}{5091852304558735383173334700159} a^{13} - \frac{3118893354598208133416205109}{5091852304558735383173334700159} a^{12} - \frac{1837829669639544739365345106403}{5091852304558735383173334700159} a^{11} + \frac{686917799324541479354902357772}{5091852304558735383173334700159} a^{10} + \frac{2254194687004934979592153213707}{5091852304558735383173334700159} a^{9} + \frac{129457506573540102243559526083}{5091852304558735383173334700159} a^{8} - \frac{630609887702506758874404646057}{5091852304558735383173334700159} a^{7} + \frac{2134925105654713592537357515554}{5091852304558735383173334700159} a^{6} + \frac{913198203012587047774228371206}{5091852304558735383173334700159} a^{5} + \frac{1068591306128636528307039978617}{5091852304558735383173334700159} a^{4} + \frac{2332784027184601524291457837552}{5091852304558735383173334700159} a^{3} - \frac{1215303132322036910718713458892}{5091852304558735383173334700159} a^{2} - \frac{1265608410406222791085414069297}{5091852304558735383173334700159} a - \frac{2458126697157098077000887094071}{5091852304558735383173334700159}$
Class group and class number
$C_{2059}$, which has order $2059$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | R | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.24.53 | $x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383$ | $7$ | $2$ | $24$ | $C_{14}$ | $[2]^{2}$ |
| $11$ | 11.14.7.2 | $x^{14} - 1771561 x^{2} + 77948684$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |