Normalized defining polynomial
\( x^{14} - 6 x^{13} + 20 x^{12} - 52 x^{11} + 113 x^{10} - 214 x^{9} + 393 x^{8} - 660 x^{7} + 973 x^{6} - 1226 x^{5} + 1245 x^{4} - 952 x^{3} + 500 x^{2} - 84 x + 13 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3720502998199975936=-\,2^{14}\cdot 13^{6}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{5} - \frac{3}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{3}{8} a + \frac{1}{8}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2} - \frac{3}{8}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{3}{16} a^{4} - \frac{5}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a + \frac{1}{16}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{1}{8} a^{6} + \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{7}{16} a - \frac{1}{4}$, $\frac{1}{58604416} a^{13} + \frac{889771}{58604416} a^{12} - \frac{272985}{58604416} a^{11} - \frac{2446733}{58604416} a^{10} - \frac{644327}{14651104} a^{9} - \frac{2808733}{29302208} a^{8} - \frac{5647897}{58604416} a^{7} + \frac{11101235}{58604416} a^{6} - \frac{264387}{3662776} a^{5} - \frac{9320137}{29302208} a^{4} + \frac{12761}{68224} a^{3} - \frac{21351397}{58604416} a^{2} + \frac{24007759}{58604416} a - \frac{1941153}{4508032}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1805}{109952} a^{13} - \frac{11593}{109952} a^{12} + \frac{39451}{109952} a^{11} - \frac{103497}{109952} a^{10} + \frac{56867}{27488} a^{9} - \frac{216509}{54976} a^{8} + \frac{790139}{109952} a^{7} - \frac{1338937}{109952} a^{6} + \frac{247799}{13744} a^{5} - \frac{1259881}{54976} a^{4} + \frac{2997}{128} a^{3} - \frac{1975201}{109952} a^{2} + \frac{952843}{109952} a - \frac{109769}{109952} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20225.9097244 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 196 |
| The 25 conjugacy class representatives for $D_7^2$ |
| Character table for $D_7^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.7.6.1 | $x^{7} - 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |