Normalized defining polynomial
\( x^{14} - 4 x^{13} + 12 x^{12} - 196 x^{11} + 666 x^{10} + 196 x^{9} + 3928 x^{8} - 20468 x^{7} - 56679 x^{6} + 182464 x^{5} + 35788 x^{4} + 818984 x^{3} - 2238836 x^{2} - 6183696 x + 17351728 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-371695365478652317502799872=-\,2^{21}\cdot 11^{7}\cdot 71^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{88} a^{8} - \frac{3}{44} a^{6} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{19}{44} a^{2} - \frac{4}{11}$, $\frac{1}{88} a^{9} - \frac{3}{44} a^{7} + \frac{1}{8} a^{5} + \frac{19}{44} a^{3} - \frac{1}{2} a^{2} - \frac{4}{11} a$, $\frac{1}{440} a^{10} - \frac{1}{440} a^{9} - \frac{1}{440} a^{8} - \frac{19}{220} a^{7} + \frac{47}{440} a^{6} + \frac{1}{8} a^{5} - \frac{61}{440} a^{4} + \frac{7}{110} a^{3} - \frac{9}{220} a^{2} + \frac{41}{110} a + \frac{24}{55}$, $\frac{1}{880} a^{11} + \frac{3}{880} a^{9} - \frac{1}{220} a^{8} - \frac{21}{880} a^{7} - \frac{27}{220} a^{6} + \frac{49}{880} a^{5} + \frac{3}{20} a^{4} - \frac{1}{44} a^{3} + \frac{39}{220} a^{2} - \frac{61}{220} a + \frac{49}{110}$, $\frac{1}{96800} a^{12} - \frac{1}{4840} a^{11} + \frac{3}{19360} a^{10} - \frac{73}{48400} a^{9} + \frac{447}{96800} a^{8} + \frac{997}{12100} a^{7} - \frac{4687}{96800} a^{6} - \frac{8509}{48400} a^{5} - \frac{3653}{24200} a^{4} - \frac{3411}{12100} a^{3} - \frac{29}{968} a^{2} - \frac{313}{2420} a + \frac{1462}{3025}$, $\frac{1}{192112113029753820761580800} a^{13} + \frac{744872754130580165309}{192112113029753820761580800} a^{12} - \frac{10004279871640755938123}{38422422605950764152316160} a^{11} + \frac{111681915874941306631909}{192112113029753820761580800} a^{10} - \frac{931687437703593091314657}{192112113029753820761580800} a^{9} - \frac{790336258242711848996381}{192112113029753820761580800} a^{8} + \frac{19892276917140218115869307}{192112113029753820761580800} a^{7} - \frac{11045386399165721761376601}{192112113029753820761580800} a^{6} + \frac{1453252760814614532571613}{6003503532179806898799400} a^{5} - \frac{1240161624582967818474483}{6003503532179806898799400} a^{4} - \frac{307251216537059407999477}{980163841988539901844800} a^{3} + \frac{4600959097646854775915441}{9605605651487691038079040} a^{2} - \frac{1632179373148923181795813}{6003503532179806898799400} a + \frac{665688810562035470914061}{12007007064359613797598800}$
Class group and class number
$C_{26}\times C_{26}$, which has order $676$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6726511.81525 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-1562}) \), 7.1.243906324992.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.243906324992.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $71$ | 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |