Normalized defining polynomial
\( x^{14} - x^{13} + 31 x^{12} + 36 x^{11} + 643 x^{10} + 844 x^{9} + 7385 x^{8} + 14106 x^{7} + 58178 x^{6} + 65124 x^{5} + 122335 x^{4} + 9326 x^{3} + 93727 x^{2} + 33565 x + 18769 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-35887976153781453950585067=-\,3^{7}\cdot 71^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(213=3\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{213}(32,·)$, $\chi_{213}(1,·)$, $\chi_{213}(91,·)$, $\chi_{213}(101,·)$, $\chi_{213}(103,·)$, $\chi_{213}(172,·)$, $\chi_{213}(143,·)$, $\chi_{213}(179,·)$, $\chi_{213}(20,·)$, $\chi_{213}(119,·)$, $\chi_{213}(116,·)$, $\chi_{213}(187,·)$, $\chi_{213}(190,·)$, $\chi_{213}(37,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{4} + \frac{1}{5}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{5} + \frac{1}{5} a$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{425} a^{12} + \frac{18}{425} a^{11} + \frac{12}{425} a^{10} - \frac{29}{425} a^{9} + \frac{2}{85} a^{8} + \frac{28}{425} a^{7} - \frac{198}{425} a^{6} + \frac{66}{425} a^{5} + \frac{2}{85} a^{4} - \frac{162}{425} a^{3} - \frac{208}{425} a^{2} - \frac{64}{425} a + \frac{149}{425}$, $\frac{1}{2636457236403252015821127475} a^{13} - \frac{2820697635013844684972958}{2636457236403252015821127475} a^{12} - \frac{41881246293457237148127406}{2636457236403252015821127475} a^{11} - \frac{19076686543189072778062736}{2636457236403252015821127475} a^{10} - \frac{251347519537116501005845921}{2636457236403252015821127475} a^{9} + \frac{241738514107073198992334318}{2636457236403252015821127475} a^{8} - \frac{123031560039040298642307226}{2636457236403252015821127475} a^{7} + \frac{207518102005677621879542044}{2636457236403252015821127475} a^{6} - \frac{942562831769625306425867416}{2636457236403252015821127475} a^{5} + \frac{575234369803909535867581653}{2636457236403252015821127475} a^{4} + \frac{139392538248150688453740979}{2636457236403252015821127475} a^{3} + \frac{1218407435663719822228753974}{2636457236403252015821127475} a^{2} + \frac{604342940433162814333049728}{2636457236403252015821127475} a - \frac{151922069782918766019656}{1132012553200194081503275}$
Class group and class number
$C_{43}$, which has order $43$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{152810655005034307380}{6203428791537063566637947} a^{13} - \frac{192854454713800815780}{6203428791537063566637947} a^{12} + \frac{4727589257104845174486}{6203428791537063566637947} a^{11} + \frac{4261278814402922331539}{6203428791537063566637947} a^{10} + \frac{95397845363786510354887}{6203428791537063566637947} a^{9} + \frac{99991389165952853472467}{6203428791537063566637947} a^{8} + \frac{1063202695506832851780056}{6203428791537063566637947} a^{7} + \frac{1791858473237167563216969}{6203428791537063566637947} a^{6} + \frac{7969138954769793291376702}{6203428791537063566637947} a^{5} + \frac{6672723099021205946246114}{6203428791537063566637947} a^{4} + \frac{13092953778048760535747401}{6203428791537063566637947} a^{3} - \frac{8498269567856723160895751}{6203428791537063566637947} a^{2} + \frac{9714561672974891254392137}{6203428791537063566637947} a + \frac{25085929376777113490677}{45280502128007763260131} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315114.696625 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $71$ | 71.14.12.1 | $x^{14} + 546629 x^{7} + 98234829011$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |