Normalized defining polynomial
\( x^{14} - 5 x^{13} + 8 x^{12} - 45 x^{11} + 380 x^{10} - 307 x^{9} + 3663 x^{8} - 1563 x^{7} + 43763 x^{6} + 25532 x^{5} + 293844 x^{4} + 197546 x^{3} + 1450369 x^{2} + 1206310 x + 3303433 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-35718784670547055607182231339=-\,19^{7}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $109.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(817=19\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{817}(704,·)$, $\chi_{817}(1,·)$, $\chi_{817}(514,·)$, $\chi_{817}(742,·)$, $\chi_{817}(360,·)$, $\chi_{817}(778,·)$, $\chi_{817}(322,·)$, $\chi_{817}(398,·)$, $\chi_{817}(305,·)$, $\chi_{817}(723,·)$, $\chi_{817}(666,·)$, $\chi_{817}(379,·)$, $\chi_{817}(170,·)$, $\chi_{817}(474,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{7} a^{11} - \frac{1}{7} a^{5}$, $\frac{1}{7} a^{12} - \frac{1}{7} a^{6}$, $\frac{1}{91258438864113461544275384111} a^{13} - \frac{3239824807467908528054067696}{91258438864113461544275384111} a^{12} - \frac{3801074143209921507666291644}{91258438864113461544275384111} a^{11} + \frac{6467129828067949921616135877}{91258438864113461544275384111} a^{10} + \frac{5755295817013412811924001349}{91258438864113461544275384111} a^{9} + \frac{76327706082615873294765120}{91258438864113461544275384111} a^{8} - \frac{3486033383383871581711612464}{91258438864113461544275384111} a^{7} + \frac{12301411775411224698562876689}{91258438864113461544275384111} a^{6} - \frac{12937596446897920094177977084}{91258438864113461544275384111} a^{5} + \frac{13143845848581650711436943896}{91258438864113461544275384111} a^{4} + \frac{17415704700958975339831577118}{91258438864113461544275384111} a^{3} - \frac{19287527689672873966735561450}{91258438864113461544275384111} a^{2} + \frac{4893513548376325864907752485}{13036919837730494506325054873} a + \frac{57526220793786799253200810}{266059588525112132782143977}$
Class group and class number
$C_{7}\times C_{3437}$, which has order $24059$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35991.64185055774 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.14.7.2 | $x^{14} - 376367048 x^{2} + 3575486956$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $43$ | 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |