Normalized defining polynomial
\( x^{14} - 5 x^{13} - 73 x^{12} + 489 x^{11} + 1036 x^{10} - 13306 x^{9} + 27880 x^{8} - 19951 x^{7} + 48006 x^{6} - 117192 x^{5} + 670781 x^{4} - 1091251 x^{3} + 2003814 x^{2} - 1429473 x + 1305077 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3569666157501162271525463699383=-\,7^{7}\cdot 113^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $152.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(791=7\cdot 113\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{791}(1,·)$, $\chi_{791}(162,·)$, $\chi_{791}(708,·)$, $\chi_{791}(566,·)$, $\chi_{791}(106,·)$, $\chi_{791}(482,·)$, $\chi_{791}(141,·)$, $\chi_{791}(561,·)$, $\chi_{791}(468,·)$, $\chi_{791}(694,·)$, $\chi_{791}(727,·)$, $\chi_{791}(706,·)$, $\chi_{791}(335,·)$, $\chi_{791}(671,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11461} a^{12} - \frac{4666}{11461} a^{11} - \frac{3543}{11461} a^{10} - \frac{59}{11461} a^{9} - \frac{2599}{11461} a^{8} + \frac{2406}{11461} a^{7} + \frac{2683}{11461} a^{6} + \frac{2942}{11461} a^{5} - \frac{1838}{11461} a^{4} + \frac{3944}{11461} a^{3} - \frac{308}{11461} a^{2} + \frac{2414}{11461} a - \frac{3995}{11461}$, $\frac{1}{5933303819862530455651424600953247} a^{13} - \frac{236538123597949589103619352027}{5933303819862530455651424600953247} a^{12} + \frac{1690014005945078755298688153802281}{5933303819862530455651424600953247} a^{11} + \frac{1166376853765355730858080551930483}{5933303819862530455651424600953247} a^{10} - \frac{31936188581959201855543840310857}{81278134518664800762348282204839} a^{9} + \frac{966889306591300584414317478562797}{5933303819862530455651424600953247} a^{8} + \frac{1423605754894854075781067765819757}{5933303819862530455651424600953247} a^{7} - \frac{1482388940937217444032526560014644}{5933303819862530455651424600953247} a^{6} - \frac{630128947832075518625322249690597}{5933303819862530455651424600953247} a^{5} + \frac{1010683412418715568816469912072444}{5933303819862530455651424600953247} a^{4} - \frac{2731206450662148371081049399226277}{5933303819862530455651424600953247} a^{3} - \frac{1637688838367245766924235686894142}{5933303819862530455651424600953247} a^{2} + \frac{2390981518735567203639115061902849}{5933303819862530455651424600953247} a + \frac{2081886498938846763246402595395183}{5933303819862530455651424600953247}$
Class group and class number
$C_{2}\times C_{2}\times C_{1582}$, which has order $6328$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 222748.97284811488 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.2081951752609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.7.1 | $x^{14} - 117649 x^{2} + 1647086$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $113$ | 113.7.6.1 | $x^{7} - 113$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 113.7.6.1 | $x^{7} - 113$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |