Normalized defining polynomial
\( x^{14} - 7 x^{10} - 7 x^{9} + 14 x^{8} + x^{7} + 49 x^{6} - 49 x^{5} - 63 x^{3} + 56 x^{2} + 7 x + 1 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3561340538630151963=-\,3^{7}\cdot 7^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{4}{9} a^{7} - \frac{4}{9} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{2}{9} a^{2} - \frac{4}{9} a - \frac{1}{9}$, $\frac{1}{765} a^{12} - \frac{23}{765} a^{11} - \frac{23}{765} a^{10} + \frac{10}{153} a^{9} - \frac{106}{765} a^{8} + \frac{161}{765} a^{7} - \frac{38}{85} a^{6} - \frac{23}{85} a^{4} - \frac{133}{765} a^{3} + \frac{23}{765} a^{2} - \frac{106}{765} a - \frac{38}{85}$, $\frac{1}{31365} a^{13} + \frac{14}{31365} a^{12} + \frac{401}{31365} a^{11} - \frac{862}{10455} a^{10} - \frac{2591}{31365} a^{9} + \frac{1849}{31365} a^{8} + \frac{1531}{6273} a^{7} - \frac{4388}{10455} a^{6} - \frac{3469}{10455} a^{5} + \frac{11078}{31365} a^{4} + \frac{8107}{31365} a^{3} + \frac{2597}{6273} a^{2} + \frac{12311}{31365} a - \frac{301}{3485}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{637}{3485} a^{13} + \frac{637}{10455} a^{12} + \frac{294}{3485} a^{11} + \frac{77}{697} a^{10} - \frac{12131}{10455} a^{9} - \frac{5488}{3485} a^{8} + \frac{5886}{3485} a^{7} - \frac{343}{2091} a^{6} + \frac{30576}{3485} a^{5} - \frac{21021}{3485} a^{4} + \frac{11123}{10455} a^{3} - \frac{2121}{205} a^{2} + \frac{23366}{3485} a + \frac{1748}{2091} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19677.9819798 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 28 |
| The 10 conjugacy class representatives for $D_{14}$ |
| Character table for $D_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.1.40353607.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 14 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.7.9.4 | $x^{7} + 35 x^{3} + 7$ | $7$ | $1$ | $9$ | $D_{7}$ | $[3/2]_{2}$ |
| 7.7.9.4 | $x^{7} + 35 x^{3} + 7$ | $7$ | $1$ | $9$ | $D_{7}$ | $[3/2]_{2}$ |