Normalized defining polynomial
\( x^{14} - x^{13} + 161 x^{12} - 162 x^{11} + 8766 x^{10} - 8929 x^{9} + 199413 x^{8} - 261750 x^{7} + 1855050 x^{6} - 4073118 x^{5} + 9051006 x^{4} - 18171460 x^{3} + 48954232 x^{2} - 47391691 x + 41183711 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-34935649744100307390657103483=-\,23^{7}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $109.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(667=23\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{667}(576,·)$, $\chi_{667}(1,·)$, $\chi_{667}(643,·)$, $\chi_{667}(484,·)$, $\chi_{667}(645,·)$, $\chi_{667}(390,·)$, $\chi_{667}(139,·)$, $\chi_{667}(528,·)$, $\chi_{667}(277,·)$, $\chi_{667}(22,·)$, $\chi_{667}(183,·)$, $\chi_{667}(24,·)$, $\chi_{667}(666,·)$, $\chi_{667}(91,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{59} a^{11} - \frac{8}{59} a^{10} + \frac{16}{59} a^{9} - \frac{23}{59} a^{8} - \frac{12}{59} a^{7} + \frac{26}{59} a^{6} - \frac{19}{59} a^{5} + \frac{14}{59} a^{4} - \frac{24}{59} a^{3} + \frac{15}{59} a^{2} - \frac{8}{59} a$, $\frac{1}{1003} a^{12} + \frac{4}{1003} a^{11} - \frac{316}{1003} a^{10} - \frac{126}{1003} a^{9} - \frac{52}{1003} a^{8} - \frac{4}{17} a^{7} - \frac{14}{59} a^{6} - \frac{332}{1003} a^{5} + \frac{203}{1003} a^{4} + \frac{317}{1003} a^{3} + \frac{231}{1003} a^{2} - \frac{273}{1003} a - \frac{2}{17}$, $\frac{1}{5808334138971223099257033557657992562788161967} a^{13} + \frac{158275880788793608706608078423857678100916}{341666714057130770544531385744587797811068351} a^{12} + \frac{4385833104191863632849419576631863435926304}{5808334138971223099257033557657992562788161967} a^{11} + \frac{2529806905694332561014371975893120204047636387}{5808334138971223099257033557657992562788161967} a^{10} + \frac{2815411330416041398166753407397190180912551974}{5808334138971223099257033557657992562788161967} a^{9} + \frac{1435498251022983877555183913795477603828275172}{5808334138971223099257033557657992562788161967} a^{8} + \frac{1714194754819213292359836800901952384368064228}{5808334138971223099257033557657992562788161967} a^{7} - \frac{2559459035355987746146118932848091686783661057}{5808334138971223099257033557657992562788161967} a^{6} - \frac{1053535808744336160161381895821868422914109037}{5808334138971223099257033557657992562788161967} a^{5} - \frac{30802454833878954898583881543894816093152703}{98446341338495306767068365384033772250646813} a^{4} - \frac{154456940151276272483075580778104605947488708}{341666714057130770544531385744587797811068351} a^{3} + \frac{1268334839589452811531277485211369504843426089}{5808334138971223099257033557657992562788161967} a^{2} - \frac{941062387284609131874283748615749851646554849}{5808334138971223099257033557657992562788161967} a + \frac{41611446743511598506695024961276629159336730}{98446341338495306767068365384033772250646813}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{8516}$, which has order $68128$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-667}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | R | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.14.7.2 | $x^{14} - 148035889 x^{2} + 27238603576$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |