Normalized defining polynomial
\( x^{14} + 16 x^{12} - 23 x^{11} + 184 x^{10} - 1422 x^{9} - 3339 x^{8} - 3403 x^{7} + 25724 x^{6} - 57007 x^{5} - 298373 x^{4} + 434497 x^{3} + 6295270 x^{2} + 14635125 x + 23001625 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-348598591551339822624996431=-\,41^{7}\cdot 151^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 151$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{25} a^{8} - \frac{2}{25} a^{7} - \frac{2}{25} a^{6} + \frac{1}{25} a^{5} - \frac{2}{25} a^{4} + \frac{3}{25} a^{3} + \frac{1}{25} a^{2}$, $\frac{1}{25} a^{9} - \frac{1}{25} a^{7} + \frac{2}{25} a^{6} - \frac{1}{25} a^{4} + \frac{2}{25} a^{3} - \frac{3}{25} a^{2}$, $\frac{1}{125} a^{10} - \frac{2}{125} a^{9} - \frac{1}{125} a^{8} - \frac{11}{125} a^{7} + \frac{11}{125} a^{6} + \frac{4}{125} a^{5} + \frac{4}{125} a^{4} + \frac{58}{125} a^{3} - \frac{59}{125} a^{2} + \frac{9}{25} a - \frac{2}{5}$, $\frac{1}{625} a^{11} - \frac{2}{625} a^{10} - \frac{1}{625} a^{9} + \frac{9}{625} a^{8} + \frac{21}{625} a^{7} + \frac{39}{625} a^{6} - \frac{1}{625} a^{5} + \frac{18}{625} a^{4} + \frac{201}{625} a^{3} - \frac{52}{125} a^{2} - \frac{6}{25} a + \frac{2}{5}$, $\frac{1}{26778125} a^{12} - \frac{224}{281875} a^{11} + \frac{21}{281875} a^{10} + \frac{77307}{26778125} a^{9} - \frac{42946}{26778125} a^{8} - \frac{2344989}{26778125} a^{7} - \frac{2010403}{26778125} a^{6} + \frac{1037656}{26778125} a^{5} - \frac{140013}{2434375} a^{4} - \frac{11435643}{26778125} a^{3} + \frac{1743739}{5355625} a^{2} - \frac{55367}{214225} a + \frac{38273}{214225}$, $\frac{1}{607148020010978392035546875} a^{13} - \frac{9338713655443607662}{607148020010978392035546875} a^{12} + \frac{5064559871192271954133}{6391031789589246231953125} a^{11} - \frac{535419617036492325878768}{607148020010978392035546875} a^{10} - \frac{279461845684728702562626}{24285920800439135681421875} a^{9} - \frac{7359265242378279837062122}{607148020010978392035546875} a^{8} + \frac{149733297648277845913187}{24285920800439135681421875} a^{7} - \frac{1220097321537490261994378}{607148020010978392035546875} a^{6} + \frac{9986654191295909666119292}{121429604002195678407109375} a^{5} + \frac{56064048452437753989052848}{607148020010978392035546875} a^{4} + \frac{15605820921303039905725454}{31955158947946231159765625} a^{3} - \frac{29852192379217247374726158}{121429604002195678407109375} a^{2} - \frac{1026062272649164742601789}{4857184160087827136284375} a + \frac{1909553843517629121186524}{4857184160087827136284375}$
Class group and class number
$C_{14}$, which has order $14$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27258655.2736 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-6191}) \), 7.1.237291625871.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.237291625871.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $41$ | 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $151$ | 151.2.1.1 | $x^{2} - 151$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 151.2.1.1 | $x^{2} - 151$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.1 | $x^{2} - 151$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.1 | $x^{2} - 151$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.1 | $x^{2} - 151$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.1 | $x^{2} - 151$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.1 | $x^{2} - 151$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |