Normalized defining polynomial
\( x^{14} - 2 x^{13} + 5 x^{12} - 28 x^{11} + 48 x^{10} - 108 x^{9} + 470 x^{8} - 868 x^{7} + 1374 x^{6} - 3956 x^{5} + 9920 x^{4} - 21684 x^{3} + 41785 x^{2} - 50890 x + 26237 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-345105711415338434419=-\,859^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $859$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4}$, $\frac{1}{12} a^{7} - \frac{1}{12} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{1}{6} a^{2} + \frac{1}{12} a - \frac{1}{12}$, $\frac{1}{12} a^{8} + \frac{1}{4} a^{2} - \frac{1}{3}$, $\frac{1}{72} a^{9} + \frac{1}{36} a^{7} + \frac{1}{72} a^{6} - \frac{1}{18} a^{5} + \frac{1}{18} a^{4} - \frac{13}{72} a^{3} + \frac{7}{18} a^{2} + \frac{17}{36} a - \frac{29}{72}$, $\frac{1}{72} a^{10} + \frac{1}{36} a^{8} + \frac{1}{72} a^{7} - \frac{1}{18} a^{6} + \frac{1}{18} a^{5} - \frac{13}{72} a^{4} - \frac{1}{9} a^{3} + \frac{17}{36} a^{2} - \frac{29}{72} a - \frac{1}{2}$, $\frac{1}{144} a^{11} - \frac{1}{144} a^{10} - \frac{1}{144} a^{9} - \frac{1}{144} a^{8} + \frac{1}{144} a^{7} - \frac{7}{144} a^{6} - \frac{29}{144} a^{5} - \frac{19}{144} a^{4} + \frac{7}{48} a^{3} - \frac{17}{48} a^{2} - \frac{61}{144} a + \frac{1}{48}$, $\frac{1}{864} a^{12} - \frac{1}{216} a^{9} - \frac{1}{108} a^{8} - \frac{1}{108} a^{7} - \frac{5}{432} a^{6} - \frac{1}{27} a^{5} - \frac{1}{27} a^{4} + \frac{49}{216} a^{3} + \frac{37}{108} a^{2} + \frac{13}{108} a - \frac{215}{864}$, $\frac{1}{50409546829056} a^{13} + \frac{21599852915}{50409546829056} a^{12} + \frac{4693021043}{4200795569088} a^{11} + \frac{18099505171}{6301193353632} a^{10} - \frac{11721881495}{6301193353632} a^{9} - \frac{106333891939}{4200795569088} a^{8} - \frac{978612015631}{25204773414528} a^{7} + \frac{1490008769731}{25204773414528} a^{6} - \frac{453322976819}{4200795569088} a^{5} - \frac{237203606759}{2100397784544} a^{4} + \frac{1089245299115}{6301193353632} a^{3} + \frac{553842743681}{1400265189696} a^{2} + \frac{19201806725933}{50409546829056} a + \frac{22738329807911}{50409546829056}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205733.451757 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-859}) \), 7.1.633839779.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.633839779.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 859 | Data not computed | ||||||