Normalized defining polynomial
\( x^{14} - 2 x^{13} - 45 x^{12} + 30 x^{11} + 1030 x^{10} + 632 x^{9} - 11085 x^{8} - 20276 x^{7} + 43102 x^{6} + 151674 x^{5} + 206418 x^{4} + 411952 x^{3} + 987997 x^{2} + 1336242 x + 1953011 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-34413598978900358351795781632=-\,2^{21}\cdot 71^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $109.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(568=2^{3}\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{568}(1,·)$, $\chi_{568}(387,·)$, $\chi_{568}(179,·)$, $\chi_{568}(385,·)$, $\chi_{568}(329,·)$, $\chi_{568}(427,·)$, $\chi_{568}(403,·)$, $\chi_{568}(321,·)$, $\chi_{568}(529,·)$, $\chi_{568}(91,·)$, $\chi_{568}(243,·)$, $\chi_{568}(545,·)$, $\chi_{568}(233,·)$, $\chi_{568}(187,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{6} + \frac{2}{5} a^{4} + \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{7} + \frac{2}{5} a^{5} + \frac{1}{5} a^{3} - \frac{1}{5} a$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{6} + \frac{1}{5} a^{2} - \frac{2}{5}$, $\frac{1}{85} a^{11} - \frac{2}{85} a^{10} - \frac{1}{85} a^{9} + \frac{3}{85} a^{8} - \frac{4}{17} a^{7} + \frac{23}{85} a^{6} + \frac{33}{85} a^{5} + \frac{1}{85} a^{4} + \frac{8}{17} a^{3} - \frac{2}{5} a^{2} - \frac{11}{85} a - \frac{2}{5}$, $\frac{1}{425} a^{12} + \frac{1}{425} a^{11} + \frac{2}{85} a^{10} + \frac{1}{25} a^{9} + \frac{6}{425} a^{8} - \frac{71}{425} a^{7} - \frac{8}{25} a^{6} + \frac{49}{425} a^{5} - \frac{8}{425} a^{4} + \frac{188}{425} a^{3} + \frac{91}{425} a^{2} + \frac{1}{425} a + \frac{11}{25}$, $\frac{1}{343070132086624660592873500225} a^{13} - \frac{15910591937235067167372384}{13722805283464986423714940009} a^{12} + \frac{708994264515218369457599369}{343070132086624660592873500225} a^{11} + \frac{6735257238241473519451016237}{343070132086624660592873500225} a^{10} + \frac{30517157165860945435049663959}{343070132086624660592873500225} a^{9} + \frac{32358966188892091425526937103}{343070132086624660592873500225} a^{8} - \frac{2611014512909398555714425365}{13722805283464986423714940009} a^{7} - \frac{17511812218694900624911175597}{68614026417324932118574700045} a^{6} + \frac{2850687930680208740362367858}{343070132086624660592873500225} a^{5} - \frac{115456028473802610192042087344}{343070132086624660592873500225} a^{4} + \frac{168267575827748158225066309408}{343070132086624660592873500225} a^{3} - \frac{11203876103538603552498234751}{68614026417324932118574700045} a^{2} + \frac{152709905909463068603049710421}{343070132086624660592873500225} a + \frac{8559961219398039076044230244}{20180596005095568270169029425}$
Class group and class number
$C_{1247}$, which has order $1247$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315114.6966253571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.6 | $x^{14} + 4 x^{11} - 3 x^{10} + 4 x^{9} + 2 x^{8} + 2 x^{7} - 3 x^{6} + 2 x^{5} - 2 x^{4} - 2 x^{3} - x^{2} - 2 x + 1$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $71$ | 71.14.12.1 | $x^{14} + 546629 x^{7} + 98234829011$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |