Normalized defining polynomial
\( x^{14} - 105 x^{12} - 147 x^{11} + 5271 x^{10} + 19838 x^{9} - 94150 x^{8} - 607634 x^{7} + \cdots + 336238208 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[0, 7]$ |
| |
| Discriminant: |
\(-337337631352558562817384077600704\)
\(\medspace = -\,2^{6}\cdot 7^{24}\cdot 31^{7}\)
|
| |
| Root discriminant: | \(210.59\) |
| |
| Galois root discriminant: | $2^{6/7}7^{96/49}31^{1/2}\approx 456.46642613478804$ | ||
| Ramified primes: |
\(2\), \(7\), \(31\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-31}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-31}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}$, $\frac{1}{8}a^{12}-\frac{1}{8}a^{10}-\frac{3}{8}a^{9}-\frac{1}{8}a^{8}-\frac{1}{4}a^{7}+\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{2}-\frac{1}{4}a$, $\frac{1}{33\cdots 44}a^{13}+\frac{41\cdots 11}{84\cdots 36}a^{12}+\frac{26\cdots 67}{33\cdots 44}a^{11}-\frac{14\cdots 07}{33\cdots 44}a^{10}-\frac{64\cdots 93}{33\cdots 44}a^{9}+\frac{19\cdots 01}{16\cdots 72}a^{8}+\frac{71\cdots 89}{16\cdots 72}a^{7}-\frac{31\cdots 77}{16\cdots 72}a^{6}-\frac{79\cdots 73}{84\cdots 36}a^{5}+\frac{76\cdots 01}{42\cdots 68}a^{4}-\frac{33\cdots 71}{16\cdots 72}a^{3}+\frac{68\cdots 99}{16\cdots 72}a^{2}+\frac{18\cdots 79}{42\cdots 68}a-\frac{30\cdots 52}{10\cdots 67}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{21}$, which has order $21$ (assuming GRH) |
| |
| Narrow class group: | $C_{21}$, which has order $21$ (assuming GRH) |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{13\cdots 81}{33\cdots 44}a^{13}-\frac{16\cdots 19}{84\cdots 36}a^{12}-\frac{12\cdots 33}{33\cdots 44}a^{11}+\frac{50\cdots 85}{33\cdots 44}a^{10}+\frac{55\cdots 03}{33\cdots 44}a^{9}-\frac{44\cdots 55}{16\cdots 72}a^{8}-\frac{61\cdots 03}{16\cdots 72}a^{7}-\frac{65\cdots 33}{16\cdots 72}a^{6}+\frac{43\cdots 99}{84\cdots 36}a^{5}+\frac{75\cdots 97}{42\cdots 68}a^{4}+\frac{66\cdots 09}{16\cdots 72}a^{3}+\frac{14\cdots 55}{16\cdots 72}a^{2}+\frac{67\cdots 61}{42\cdots 68}a+\frac{14\cdots 87}{10\cdots 67}$, $\frac{13\cdots 39}{33\cdots 44}a^{13}-\frac{12\cdots 97}{21\cdots 34}a^{12}-\frac{13\cdots 75}{33\cdots 44}a^{11}-\frac{24\cdots 97}{33\cdots 44}a^{10}+\frac{51\cdots 69}{33\cdots 44}a^{9}+\frac{11\cdots 33}{16\cdots 72}a^{8}-\frac{32\cdots 21}{16\cdots 72}a^{7}-\frac{33\cdots 87}{16\cdots 72}a^{6}-\frac{55\cdots 13}{84\cdots 36}a^{5}-\frac{74\cdots 55}{42\cdots 68}a^{4}-\frac{73\cdots 65}{16\cdots 72}a^{3}-\frac{10\cdots 11}{16\cdots 72}a^{2}-\frac{34\cdots 57}{21\cdots 34}a+\frac{85\cdots 81}{10\cdots 67}$, $\frac{79\cdots 61}{16\cdots 72}a^{13}-\frac{14\cdots 39}{84\cdots 36}a^{12}-\frac{86\cdots 25}{16\cdots 72}a^{11}-\frac{73\cdots 21}{16\cdots 72}a^{10}+\frac{45\cdots 21}{16\cdots 72}a^{9}+\frac{33\cdots 97}{42\cdots 68}a^{8}-\frac{49\cdots 45}{84\cdots 36}a^{7}-\frac{22\cdots 75}{84\cdots 36}a^{6}+\frac{67\cdots 59}{10\cdots 67}a^{5}+\frac{62\cdots 31}{10\cdots 67}a^{4}+\frac{11\cdots 49}{84\cdots 36}a^{3}+\frac{20\cdots 89}{84\cdots 36}a^{2}+\frac{27\cdots 11}{42\cdots 68}a+\frac{87\cdots 61}{10\cdots 67}$, $\frac{11\cdots 03}{33\cdots 44}a^{13}-\frac{10\cdots 45}{84\cdots 36}a^{12}-\frac{10\cdots 35}{33\cdots 44}a^{11}+\frac{23\cdots 79}{33\cdots 44}a^{10}+\frac{53\cdots 45}{33\cdots 44}a^{9}+\frac{15\cdots 15}{16\cdots 72}a^{8}-\frac{61\cdots 85}{16\cdots 72}a^{7}-\frac{12\cdots 47}{16\cdots 72}a^{6}+\frac{41\cdots 05}{84\cdots 36}a^{5}+\frac{10\cdots 75}{42\cdots 68}a^{4}+\frac{94\cdots 87}{16\cdots 72}a^{3}+\frac{20\cdots 25}{16\cdots 72}a^{2}+\frac{10\cdots 31}{42\cdots 68}a+\frac{32\cdots 63}{10\cdots 67}$, $\frac{69\cdots 27}{33\cdots 44}a^{13}-\frac{37\cdots 89}{42\cdots 68}a^{12}-\frac{60\cdots 87}{33\cdots 44}a^{11}+\frac{15\cdots 07}{33\cdots 44}a^{10}+\frac{29\cdots 61}{33\cdots 44}a^{9}+\frac{46\cdots 85}{16\cdots 72}a^{8}-\frac{34\cdots 17}{16\cdots 72}a^{7}-\frac{62\cdots 47}{16\cdots 72}a^{6}+\frac{23\cdots 11}{84\cdots 36}a^{5}+\frac{56\cdots 57}{42\cdots 68}a^{4}+\frac{51\cdots 07}{16\cdots 72}a^{3}+\frac{10\cdots 21}{16\cdots 72}a^{2}+\frac{13\cdots 86}{10\cdots 67}a+\frac{17\cdots 65}{10\cdots 67}$, $\frac{15\cdots 17}{16\cdots 72}a^{13}-\frac{73\cdots 33}{84\cdots 36}a^{12}-\frac{16\cdots 61}{16\cdots 72}a^{11}-\frac{21\cdots 89}{16\cdots 72}a^{10}+\frac{83\cdots 37}{16\cdots 72}a^{9}+\frac{18\cdots 10}{10\cdots 67}a^{8}-\frac{84\cdots 61}{84\cdots 36}a^{7}-\frac{48\cdots 63}{84\cdots 36}a^{6}+\frac{19\cdots 35}{21\cdots 34}a^{5}+\frac{12\cdots 91}{10\cdots 67}a^{4}+\frac{26\cdots 97}{84\cdots 36}a^{3}+\frac{45\cdots 33}{84\cdots 36}a^{2}+\frac{58\cdots 29}{42\cdots 68}a+\frac{22\cdots 58}{10\cdots 67}$
|
| |
| Regulator: | \( 8415941567.41 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{7}\cdot 8415941567.41 \cdot 21}{2\cdot\sqrt{337337631352558562817384077600704}}\cr\approx \mathstrut & 1.86002462311 \end{aligned}\] (assuming GRH)
Galois group
$C_7^2:S_3$ (as 14T15):
| A solvable group of order 294 |
| The 20 conjugacy class representatives for $C_7^2:S_3$ |
| Character table for $C_7^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.14.0.1}{14} }$ | ${\href{/padicField/5.3.0.1}{3} }^{4}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/11.14.0.1}{14} }$ | ${\href{/padicField/13.14.0.1}{14} }$ | ${\href{/padicField/17.14.0.1}{14} }$ | ${\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.14.0.1}{14} }$ | ${\href{/padicField/29.14.0.1}{14} }$ | R | ${\href{/padicField/37.14.0.1}{14} }$ | ${\href{/padicField/41.3.0.1}{3} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.14.0.1}{14} }$ | ${\href{/padicField/47.7.0.1}{7} }^{2}$ | ${\href{/padicField/53.14.0.1}{14} }$ | ${\href{/padicField/59.3.0.1}{3} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 2.3.1.0a1.1 | $x^{3} + x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 2.3.1.0a1.1 | $x^{3} + x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 2.1.7.6a1.1 | $x^{7} + 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $$[\ ]_{7}^{3}$$ | |
|
\(7\)
| 7.1.7.12a3.1 | $x^{7} + 21 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7:C_3$ | $$[2]^{3}$$ |
| 7.1.7.12a5.1 | $x^{7} + 35 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7:C_3$ | $$[2]^{3}$$ | |
|
\(31\)
| 31.7.2.7a1.2 | $x^{14} + 2 x^{8} + 56 x^{7} + x^{2} + 56 x + 815$ | $2$ | $7$ | $7$ | $C_{14}$ | $$[\ ]_{2}^{7}$$ |