Normalized defining polynomial
\( x^{14} - 105 x^{12} - 147 x^{11} + 5271 x^{10} + 19838 x^{9} - 94150 x^{8} - 607634 x^{7} + 570164 x^{6} + 12260920 x^{5} + 42847770 x^{4} + 95169270 x^{3} + 197804880 x^{2} + 348280352 x + 336238208 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-337337631352558562817384077600704=-\,2^{6}\cdot 7^{24}\cdot 31^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $210.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{3}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{33943407191346728233461186063293185464615842144} a^{13} + \frac{418516896026689380110060920014211356966879711}{8485851797836682058365296515823296366153960536} a^{12} + \frac{2656200787485609157505739931623691530635460567}{33943407191346728233461186063293185464615842144} a^{11} - \frac{1464119244341282853836090033664022253349808207}{33943407191346728233461186063293185464615842144} a^{10} - \frac{6409657171168562365089327913896554304539221693}{33943407191346728233461186063293185464615842144} a^{9} + \frac{1997762671017796336023611292128022692054870001}{16971703595673364116730593031646592732307921072} a^{8} + \frac{7170768629378271007713670479570270848445891889}{16971703595673364116730593031646592732307921072} a^{7} - \frac{3116102953294730467165865594780414137790941277}{16971703595673364116730593031646592732307921072} a^{6} - \frac{798817690008303404402781009491928548098647273}{8485851797836682058365296515823296366153960536} a^{5} + \frac{764875409373275694671777576076125712959914401}{4242925898918341029182648257911648183076980268} a^{4} - \frac{3326929353782267454856771446113767029925169571}{16971703595673364116730593031646592732307921072} a^{3} + \frac{6809952479109608182236165420321440235138282199}{16971703595673364116730593031646592732307921072} a^{2} + \frac{1823720319701381772860755918221875519470619279}{4242925898918341029182648257911648183076980268} a - \frac{309594565797954548820025255002711920477350052}{1060731474729585257295662064477912045769245067}$
Class group and class number
$C_{21}$, which has order $21$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8415941567.41 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_7^2:S_3$ (as 14T15):
| A solvable group of order 294 |
| The 20 conjugacy class representatives for $C_7^2:S_3$ |
| Character table for $C_7^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| $7$ | 7.7.12.8 | $x^{7} + 21 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7:C_3$ | $[2]^{3}$ |
| 7.7.12.9 | $x^{7} + 35 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7:C_3$ | $[2]^{3}$ | |
| $31$ | 31.14.7.2 | $x^{14} - 887503681 x^{2} + 495227053998$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |