Normalized defining polynomial
\( x^{14} - x^{13} + 14 x^{12} + 754 x^{11} + 840 x^{10} - 19828 x^{9} - 8271 x^{8} + 300557 x^{7} - 186895 x^{6} - 3184843 x^{5} + 2562883 x^{4} + 17073682 x^{3} - 11883459 x^{2} - 10003960 x + 148699319 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3328968836295431565149961657333739=-\,379^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $248.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $379$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(379\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{379}(1,·)$, $\chi_{379}(195,·)$, $\chi_{379}(260,·)$, $\chi_{379}(293,·)$, $\chi_{379}(138,·)$, $\chi_{379}(125,·)$, $\chi_{379}(241,·)$, $\chi_{379}(94,·)$, $\chi_{379}(86,·)$, $\chi_{379}(119,·)$, $\chi_{379}(184,·)$, $\chi_{379}(378,·)$, $\chi_{379}(285,·)$, $\chi_{379}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5539985449407491867495356759667961063719262944971} a^{13} - \frac{2181491925514533352020617621687893304219474131717}{5539985449407491867495356759667961063719262944971} a^{12} - \frac{572370004079953758602310915795848280120667907927}{5539985449407491867495356759667961063719262944971} a^{11} + \frac{1138146363352398862872606904482074207200840546609}{5539985449407491867495356759667961063719262944971} a^{10} - \frac{2256597505110529233098043543053725218569470878465}{5539985449407491867495356759667961063719262944971} a^{9} - \frac{36581693064367291289375278519162087412629599921}{90819433596844128975333717371605919077364966311} a^{8} - \frac{1446819822232959032303270414534959496792576757387}{5539985449407491867495356759667961063719262944971} a^{7} + \frac{1534048819665959610684139356101311113864594104269}{5539985449407491867495356759667961063719262944971} a^{6} - \frac{2583904749397210853347367543593486751882261383293}{5539985449407491867495356759667961063719262944971} a^{5} + \frac{286795985732914791878519094086010488620198747847}{5539985449407491867495356759667961063719262944971} a^{4} - \frac{7233134088671555213887976212128427586319599664}{27839122861344180238670134470693271676981220829} a^{3} - \frac{2420452941084115914639191180701138579250565303355}{5539985449407491867495356759667961063719262944971} a^{2} + \frac{41119516369265257954250849338722333064458480308}{5539985449407491867495356759667961063719262944971} a + \frac{2097572508975540493223282964926621919741596384529}{5539985449407491867495356759667961063719262944971}$
Class group and class number
$C_{4497}$, which has order $4497$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17223236.102860697 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-379}) \), 7.7.2963706958323721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 379 | Data not computed | ||||||