Normalized defining polynomial
\( x^{14} - 1505 x^{11} + 64414 x^{10} + 721798 x^{9} + 13901986 x^{8} + 93883663 x^{7} + 1745978192 x^{6} + 12020663158 x^{5} + 128672845938 x^{4} + 540194248076 x^{3} + 4793924304218 x^{2} + 6892330333119 x + 65986926254491 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-329187156767051876908796215815371233484443=-\,7^{24}\cdot 43^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $923.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2107=7^{2}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2107}(2080,·)$, $\chi_{2107}(1,·)$, $\chi_{2107}(729,·)$, $\chi_{2107}(1387,·)$, $\chi_{2107}(1870,·)$, $\chi_{2107}(911,·)$, $\chi_{2107}(78,·)$, $\chi_{2107}(1527,·)$, $\chi_{2107}(1464,·)$, $\chi_{2107}(505,·)$, $\chi_{2107}(1114,·)$, $\chi_{2107}(687,·)$, $\chi_{2107}(477,·)$, $\chi_{2107}(414,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{11} a^{9} - \frac{5}{11} a^{8} - \frac{2}{11} a^{7} + \frac{2}{11} a^{6} + \frac{1}{11} a^{4} - \frac{5}{11} a^{3} - \frac{2}{11} a^{2} + \frac{2}{11} a$, $\frac{1}{1199} a^{10} + \frac{4}{109} a^{9} + \frac{6}{1199} a^{8} + \frac{355}{1199} a^{7} - \frac{177}{1199} a^{6} - \frac{32}{1199} a^{5} - \frac{26}{109} a^{4} + \frac{325}{1199} a^{3} + \frac{520}{1199} a^{2} + \frac{593}{1199} a - \frac{11}{109}$, $\frac{1}{20383} a^{11} - \frac{8}{20383} a^{10} - \frac{39}{1853} a^{9} + \frac{370}{20383} a^{8} - \frac{4358}{20383} a^{7} + \frac{6883}{20383} a^{6} + \frac{6174}{20383} a^{5} + \frac{24}{1853} a^{4} - \frac{5262}{20383} a^{3} - \frac{9770}{20383} a^{2} + \frac{8719}{20383} a + \frac{8}{109}$, $\frac{1}{835703} a^{12} - \frac{12}{835703} a^{11} + \frac{18}{75973} a^{10} - \frac{18059}{835703} a^{9} - \frac{280218}{835703} a^{8} - \frac{201768}{835703} a^{7} + \frac{4890}{835703} a^{6} - \frac{6}{1853} a^{5} + \frac{42166}{835703} a^{4} + \frac{171299}{835703} a^{3} + \frac{246019}{835703} a^{2} - \frac{303153}{835703} a + \frac{2090}{4469}$, $\frac{1}{226585828525987787094583020510561008993521293356431273139164133261} a^{13} + \frac{104885467862261620230066498326056446480734930639617124550880}{226585828525987787094583020510561008993521293356431273139164133261} a^{12} - \frac{5022443300448358531197152546353865898214625640884479299739659}{226585828525987787094583020510561008993521293356431273139164133261} a^{11} - \frac{10205520343539737418271090874137012481198360630671822572694200}{226585828525987787094583020510561008993521293356431273139164133261} a^{10} - \frac{3758926475420905390753024388540583351185365206345640675263249345}{226585828525987787094583020510561008993521293356431273139164133261} a^{9} + \frac{106332641258965110458939539093425565101261001376041591406875906378}{226585828525987787094583020510561008993521293356431273139164133261} a^{8} + \frac{110905868146511370079763546931178526189674957891391085767914124335}{226585828525987787094583020510561008993521293356431273139164133261} a^{7} - \frac{100403627582042510915351481357147668589982190802936855185186683246}{226585828525987787094583020510561008993521293356431273139164133261} a^{6} - \frac{6575855832570655429947396147882090590828126607058321363360833938}{226585828525987787094583020510561008993521293356431273139164133261} a^{5} + \frac{79100447825709361513944583736965231229683250970552705018296242603}{226585828525987787094583020510561008993521293356431273139164133261} a^{4} - \frac{69104145996609096487215139028972531343166111623077344454160720378}{226585828525987787094583020510561008993521293356431273139164133261} a^{3} + \frac{18865838937948931102347258525686966740151537915870081011780860}{465268641737141246600786489754745398343986228657969760039351403} a^{2} + \frac{2579714485474939768850903921859666908453247724718336698437309}{17179909661535202600241339033327849646942246823597791579283049} a - \frac{36815594453573092320937082730294093909895553080225297488534610}{110153538418078651966253291448984447736276759045421134243638373}$
Class group and class number
$C_{2}\times C_{2}\times C_{1921402}$, which has order $7685608$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 769768169.7365845 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 7.7.87495801462998035849.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.24.53 | $x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383$ | $7$ | $2$ | $24$ | $C_{14}$ | $[2]^{2}$ |
| $43$ | 43.14.13.9 | $x^{14} + 31347$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |