Normalized defining polynomial
\( x^{14} - 5719 x^{11} + 26488 x^{10} + 1147412 x^{9} + 383474 x^{8} - 156246735 x^{7} - 336846090 x^{6} + 13714379322 x^{5} + 49838686632 x^{4} - 498852081686 x^{3} - 2342604234320 x^{2} + 5856771467617 x + 38059805953523 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-329187156767051876908796215815371233484443=-\,7^{24}\cdot 43^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $923.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2107=7^{2}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2107}(1632,·)$, $\chi_{2107}(1,·)$, $\chi_{2107}(260,·)$, $\chi_{2107}(806,·)$, $\chi_{2107}(1478,·)$, $\chi_{2107}(967,·)$, $\chi_{2107}(680,·)$, $\chi_{2107}(1513,·)$, $\chi_{2107}(813,·)$, $\chi_{2107}(687,·)$, $\chi_{2107}(176,·)$, $\chi_{2107}(1688,·)$, $\chi_{2107}(624,·)$, $\chi_{2107}(1919,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{6451507722051953348843847330915128716049266798429745701330355255117542254578681} a^{13} + \frac{647894030438127505987091020123000730265554615926264497922337475416812360358611}{6451507722051953348843847330915128716049266798429745701330355255117542254578681} a^{12} + \frac{704734492031662813144892350562017564378534701223371591709216736355470352374556}{6451507722051953348843847330915128716049266798429745701330355255117542254578681} a^{11} + \frac{2350078794282807705207568984054406941233420079820969328208191479336523579364443}{6451507722051953348843847330915128716049266798429745701330355255117542254578681} a^{10} - \frac{7255128931950175209861076514800425239032518736830176446814373664079136907739}{81664654709518396820808194062216819190497048081389186092789307026804332336439} a^{9} - \frac{2386788567050700541104406977019049189204926858587436252982316126221856832270355}{6451507722051953348843847330915128716049266798429745701330355255117542254578681} a^{8} + \frac{2235912514299279421838873994902846035337025613310443440570960472008506759879389}{6451507722051953348843847330915128716049266798429745701330355255117542254578681} a^{7} + \frac{12013568622374304273767504711714695010800584086926544455274771648809874440040}{81664654709518396820808194062216819190497048081389186092789307026804332336439} a^{6} - \frac{1491675036077218981739890241771432361952355054396756529346095011621968693261739}{6451507722051953348843847330915128716049266798429745701330355255117542254578681} a^{5} + \frac{2578939667230996133369276128167696938120317688516933855773684340498405133684936}{6451507722051953348843847330915128716049266798429745701330355255117542254578681} a^{4} + \frac{2306655102329553384926776914789205613225830631305629305698567213312995960579707}{6451507722051953348843847330915128716049266798429745701330355255117542254578681} a^{3} + \frac{1643709333396630235074070460216691055802739410187451317633975915901422371091315}{6451507722051953348843847330915128716049266798429745701330355255117542254578681} a^{2} + \frac{857348566105158610335492280914035148298947875399298486716030401371140425926417}{6451507722051953348843847330915128716049266798429745701330355255117542254578681} a + \frac{151673267901401825771892046660299528611036819803961706769058553159180207169371}{6451507722051953348843847330915128716049266798429745701330355255117542254578681}$
Class group and class number
$C_{1662773}$, which has order $1662773$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 224277011.0596314 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 7.7.87495801462998035849.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.24.53 | $x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383$ | $7$ | $2$ | $24$ | $C_{14}$ | $[2]^{2}$ |
| $43$ | 43.14.13.8 | $x^{14} + 387$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |