Normalized defining polynomial
\( x^{14} - 7826 x^{11} + 70735 x^{10} + 494242 x^{9} - 4232963 x^{8} - 54303754 x^{7} + 285753447 x^{6} + 4782561910 x^{5} - 15205020719 x^{4} - 206213160958 x^{3} + 375732658658 x^{2} + 7534219954478 x + 20950836200249 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-329187156767051876908796215815371233484443=-\,7^{24}\cdot 43^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $923.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2107=7^{2}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2107}(1,·)$, $\chi_{2107}(1380,·)$, $\chi_{2107}(2017,·)$, $\chi_{2107}(365,·)$, $\chi_{2107}(1709,·)$, $\chi_{2107}(113,·)$, $\chi_{2107}(1779,·)$, $\chi_{2107}(22,·)$, $\chi_{2107}(484,·)$, $\chi_{2107}(379,·)$, $\chi_{2107}(1212,·)$, $\chi_{2107}(687,·)$, $\chi_{2107}(862,·)$, $\chi_{2107}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{3}{8} a^{2} - \frac{3}{8} a - \frac{3}{8}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{6} - \frac{1}{8} a^{3} + \frac{1}{8}$, $\frac{1}{160} a^{10} - \frac{1}{40} a^{9} + \frac{9}{160} a^{8} - \frac{1}{40} a^{7} + \frac{1}{32} a^{6} + \frac{3}{40} a^{5} + \frac{7}{160} a^{4} + \frac{1}{10} a^{3} + \frac{79}{160} a^{2} - \frac{2}{5} a - \frac{77}{160}$, $\frac{1}{160} a^{11} - \frac{7}{160} a^{9} - \frac{1}{20} a^{8} - \frac{11}{160} a^{7} - \frac{1}{20} a^{6} - \frac{5}{32} a^{5} - \frac{9}{40} a^{4} - \frac{17}{160} a^{3} + \frac{13}{40} a^{2} + \frac{67}{160} a + \frac{13}{40}$, $\frac{1}{3627200} a^{12} - \frac{1013}{3627200} a^{11} - \frac{403}{906800} a^{10} - \frac{98057}{3627200} a^{9} + \frac{10453}{226700} a^{8} + \frac{66103}{725440} a^{7} - \frac{197013}{1813600} a^{6} - \frac{836691}{3627200} a^{5} + \frac{45491}{226700} a^{4} + \frac{585953}{3627200} a^{3} + \frac{184549}{906800} a^{2} - \frac{401819}{3627200} a - \frac{708051}{3627200}$, $\frac{1}{2362694111618943100998641199828770676382997208905976153128120000} a^{13} + \frac{11116339725099809528618202539226945299012680702206722923}{1181347055809471550499320599914385338191498604452988076564060000} a^{12} + \frac{1940150307175342713196597827330119139495372308918446044187091}{2362694111618943100998641199828770676382997208905976153128120000} a^{11} - \frac{1080990197332376479977502262201901818941213956106585738743843}{472538822323788620199728239965754135276599441781195230625624000} a^{10} + \frac{26922968305512539496681534781370978600389072411045599308850919}{472538822323788620199728239965754135276599441781195230625624000} a^{9} - \frac{47531695022629548380011096291286828784517604539991596116844263}{2362694111618943100998641199828770676382997208905976153128120000} a^{8} - \frac{236938326391009630564611596097276646139444800969911825253107211}{2362694111618943100998641199828770676382997208905976153128120000} a^{7} - \frac{5613057903899668876527201950018377521884140354309840230097727}{472538822323788620199728239965754135276599441781195230625624000} a^{6} + \frac{172049955621484664930679041793166468191593684729662791288818737}{2362694111618943100998641199828770676382997208905976153128120000} a^{5} - \frac{552811359000775757097341887751338861356311730578504601521624213}{2362694111618943100998641199828770676382997208905976153128120000} a^{4} - \frac{101508681301975314137214523454532822575071596622356175366159167}{2362694111618943100998641199828770676382997208905976153128120000} a^{3} + \frac{2029464197740827116232375359779800907023312731916723988974853}{8009132581759129155927597287555154835196600708155851366536000} a^{2} + \frac{303262227789568519889773152386217071582276761769996592105437559}{1181347055809471550499320599914385338191498604452988076564060000} a + \frac{14060720922688698818194910776409866269853576061653475418819439}{29907520400239786088590394934541400966873382391214888014280000}$
Class group and class number
$C_{40187}$, which has order $40187$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 155488734885.34106 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 7.7.87495801462998035849.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.24.53 | $x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383$ | $7$ | $2$ | $24$ | $C_{14}$ | $[2]^{2}$ |
| $43$ | 43.14.13.12 | $x^{14} + 16659081027$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |