Normalized defining polynomial
\( x^{14} - 1505 x^{11} + 39130 x^{10} + 131838 x^{9} + 6674976 x^{8} + 4397266 x^{7} - 85626373 x^{6} - 2202387502 x^{5} + 75633303333 x^{4} + 1283975888426 x^{3} + 5366060727678 x^{2} + 406889558152 x + 11968080874901 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-329187156767051876908796215815371233484443=-\,7^{24}\cdot 43^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $923.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2107=7^{2}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2107}(1,·)$, $\chi_{2107}(323,·)$, $\chi_{2107}(1415,·)$, $\chi_{2107}(778,·)$, $\chi_{2107}(204,·)$, $\chi_{2107}(1933,·)$, $\chi_{2107}(1583,·)$, $\chi_{2107}(561,·)$, $\chi_{2107}(309,·)$, $\chi_{2107}(1016,·)$, $\chi_{2107}(666,·)$, $\chi_{2107}(687,·)$, $\chi_{2107}(1086,·)$, $\chi_{2107}(575,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{23} a^{10} + \frac{1}{23} a^{9} - \frac{4}{23} a^{8} + \frac{9}{23} a^{7} - \frac{8}{23} a^{6} - \frac{5}{23} a^{5} + \frac{8}{23} a^{4} + \frac{10}{23} a^{2} + \frac{11}{23} a$, $\frac{1}{23} a^{11} - \frac{5}{23} a^{9} - \frac{10}{23} a^{8} + \frac{6}{23} a^{7} + \frac{3}{23} a^{6} - \frac{10}{23} a^{5} - \frac{8}{23} a^{4} + \frac{10}{23} a^{3} + \frac{1}{23} a^{2} - \frac{11}{23} a$, $\frac{1}{41791} a^{12} - \frac{463}{41791} a^{11} - \frac{459}{41791} a^{10} - \frac{610}{41791} a^{9} + \frac{15583}{41791} a^{8} + \frac{2615}{41791} a^{7} + \frac{18379}{41791} a^{6} - \frac{4585}{41791} a^{5} + \frac{10271}{41791} a^{4} - \frac{2421}{41791} a^{3} - \frac{570}{1817} a^{2} - \frac{6387}{41791} a - \frac{6}{23}$, $\frac{1}{2542095299757409057453888961018854217354108514506032560150907721624448579979} a^{13} - \frac{1309940810885527685973486636478240466328349987282002447559404443016285}{2542095299757409057453888961018854217354108514506032560150907721624448579979} a^{12} - \frac{21197698679078907105797169735386503652857533689897747462264971482970774145}{2542095299757409057453888961018854217354108514506032560150907721624448579979} a^{11} + \frac{42993608121049789064701721682959217228976232006175269960959897111722214873}{2542095299757409057453888961018854217354108514506032560150907721624448579979} a^{10} + \frac{635480695856503839208173027410898160894114747584918468946514228423816195896}{2542095299757409057453888961018854217354108514506032560150907721624448579979} a^{9} + \frac{186892594141512313093218114674206465462942834303270946927919573302933790539}{2542095299757409057453888961018854217354108514506032560150907721624448579979} a^{8} - \frac{955534485674261251976513731125361983614861525581887003391012090017559878610}{2542095299757409057453888961018854217354108514506032560150907721624448579979} a^{7} + \frac{397411910207004640204510953992508216997525083181994410274395672048045311181}{2542095299757409057453888961018854217354108514506032560150907721624448579979} a^{6} - \frac{837493027017909247513398457620755531170775372997950128859535556512695966278}{2542095299757409057453888961018854217354108514506032560150907721624448579979} a^{5} + \frac{508641279640415779109629723787524137779040065335907286935795310431524309580}{2542095299757409057453888961018854217354108514506032560150907721624448579979} a^{4} - \frac{1204189657223799163663934070802823952621757548937106211796857742325687835461}{2542095299757409057453888961018854217354108514506032560150907721624448579979} a^{3} - \frac{585371401684783063661395065507919765621367817181445898545972702337908677410}{2542095299757409057453888961018854217354108514506032560150907721624448579979} a^{2} - \frac{985208508993073966733621785237328432441925663348664645264605799173308136075}{2542095299757409057453888961018854217354108514506032560150907721624448579979} a + \frac{36819265452047803433389699896586473656795351184469077386208785670103959}{1399061805039850884674677468915164676584539633740249069978485262313950787}$
Class group and class number
$C_{3112193}$, which has order $3112193$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 301031344.50909585 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 7.7.87495801462998035849.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.24.53 | $x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383$ | $7$ | $2$ | $24$ | $C_{14}$ | $[2]^{2}$ |
| $43$ | 43.14.13.10 | $x^{14} + 2539107$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |