Normalized defining polynomial
\( x^{14} - 5719 x^{11} - 24080 x^{10} + 1193766 x^{9} + 24550764 x^{8} + 307265874 x^{7} + 2773555771 x^{6} + 18547361140 x^{5} + 94817302349 x^{4} + 366737247170 x^{3} + 1042967916088 x^{2} + 2126473677202 x + 2771555675837 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-329187156767051876908796215815371233484443=-\,7^{24}\cdot 43^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $923.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2107=7^{2}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2107}(512,·)$, $\chi_{2107}(1,·)$, $\chi_{2107}(1282,·)$, $\chi_{2107}(1828,·)$, $\chi_{2107}(1317,·)$, $\chi_{2107}(8,·)$, $\chi_{2107}(64,·)$, $\chi_{2107}(1163,·)$, $\chi_{2107}(428,·)$, $\chi_{2107}(876,·)$, $\chi_{2107}(687,·)$, $\chi_{2107}(1107,·)$, $\chi_{2107}(1982,·)$, $\chi_{2107}(1989,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{13} a^{8} - \frac{2}{13} a^{7} + \frac{4}{13} a^{6} + \frac{5}{13} a^{5} + \frac{4}{13} a^{4} + \frac{5}{13} a^{3} + \frac{3}{13} a^{2} - \frac{6}{13} a$, $\frac{1}{13} a^{9} + \frac{1}{13} a^{5} + \frac{1}{13} a$, $\frac{1}{13} a^{10} + \frac{1}{13} a^{6} + \frac{1}{13} a^{2}$, $\frac{1}{13} a^{11} + \frac{1}{13} a^{7} + \frac{1}{13} a^{3}$, $\frac{1}{1695577} a^{12} - \frac{11186}{1695577} a^{11} + \frac{62453}{1695577} a^{10} - \frac{21752}{1695577} a^{9} - \frac{35290}{1695577} a^{8} - \frac{664899}{1695577} a^{7} + \frac{114027}{1695577} a^{6} - \frac{268030}{1695577} a^{5} - \frac{73134}{1695577} a^{4} - \frac{598402}{1695577} a^{3} - \frac{27905}{130429} a^{2} - \frac{1132}{1695577} a + \frac{41009}{130429}$, $\frac{1}{22780877273031902839983429630931174632031195763845832476748359573} a^{13} - \frac{5649452022120163728742114419566533775127801164179014340626}{22780877273031902839983429630931174632031195763845832476748359573} a^{12} + \frac{790860307361822902637083946220074907510054648594001428931753740}{22780877273031902839983429630931174632031195763845832476748359573} a^{11} - \frac{1097504034322763097006915279559036333609702423235554697710968}{134798090372969839289842778881249554035687548898496050158274317} a^{10} + \frac{172197319205763609122383551123509820919523809350650185774649805}{22780877273031902839983429630931174632031195763845832476748359573} a^{9} - \frac{110645899459853094090467219631448806775574407697206352695241679}{22780877273031902839983429630931174632031195763845832476748359573} a^{8} - \frac{2804230349429271556074158720732744858511881165539777194141016883}{22780877273031902839983429630931174632031195763845832476748359573} a^{7} - \frac{4045908591117165423078413339382680822445443722218006942615910242}{22780877273031902839983429630931174632031195763845832476748359573} a^{6} + \frac{4360110175602852316680947386231374387641442769074628706162142081}{22780877273031902839983429630931174632031195763845832476748359573} a^{5} + \frac{605641152002385647835628102387939257512777892209180934959566503}{1752375174848607910767956125456244202463938135680448652057566121} a^{4} - \frac{9579997883747369639118741020352052861597442003877851940054730647}{22780877273031902839983429630931174632031195763845832476748359573} a^{3} - \frac{5404828541007400351364532856105307203934740329173110017010739330}{22780877273031902839983429630931174632031195763845832476748359573} a^{2} + \frac{3950531920647722852896268012673626210207793051780783553325764111}{22780877273031902839983429630931174632031195763845832476748359573} a + \frac{376927034464835947771744410840682604911643188514219927896808895}{1752375174848607910767956125456244202463938135680448652057566121}$
Class group and class number
$C_{2756257}$, which has order $2756257$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 534504501.8334233 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 7.7.87495801462998035849.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.24.53 | $x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383$ | $7$ | $2$ | $24$ | $C_{14}$ | $[2]^{2}$ |
| $43$ | 43.14.13.14 | $x^{14} + 109300230618147$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |