Normalized defining polynomial
\( x^{14} - 5719 x^{11} + 43344 x^{10} + 780794 x^{9} + 23613149 x^{8} + 133073863 x^{7} + 1161357330 x^{6} - 1029856751 x^{5} + 8912217496 x^{4} - 87810748963 x^{3} + 610422315916 x^{2} - 431820674782 x + 1580168235629 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-329187156767051876908796215815371233484443=-\,7^{24}\cdot 43^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $923.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2107=7^{2}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2107}(1408,·)$, $\chi_{2107}(1,·)$, $\chi_{2107}(610,·)$, $\chi_{2107}(211,·)$, $\chi_{2107}(715,·)$, $\chi_{2107}(2066,·)$, $\chi_{2107}(687,·)$, $\chi_{2107}(1681,·)$, $\chi_{2107}(274,·)$, $\chi_{2107}(1331,·)$, $\chi_{2107}(1268,·)$, $\chi_{2107}(183,·)$, $\chi_{2107}(1884,·)$, $\chi_{2107}(925,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{27} a^{12} + \frac{2}{27} a^{11} - \frac{1}{27} a^{10} + \frac{2}{27} a^{9} - \frac{2}{27} a^{7} - \frac{11}{27} a^{6} + \frac{13}{27} a^{5} - \frac{2}{9} a^{4} - \frac{4}{27} a^{3} - \frac{10}{27} a^{2} + \frac{11}{27} a + \frac{13}{27}$, $\frac{1}{105516435199243382264019480285594396608350139697970216004897900291709603579} a^{13} - \frac{29590128809310479407177146677180755151168634910860918749192591791557721}{35172145066414460754673160095198132202783379899323405334965966763903201193} a^{12} - \frac{10823848695302125097795318729779985137536681562558248030057645250089343682}{105516435199243382264019480285594396608350139697970216004897900291709603579} a^{11} - \frac{131158558671750873128911557882385212734445680730690128022320198374140421}{2245030536154114516255733623097753119326598716978089702231870218972544757} a^{10} - \frac{7804001779982293416520545357105132243092943366825706074209189495296198450}{105516435199243382264019480285594396608350139697970216004897900291709603579} a^{9} + \frac{152390277004562911753515590895654870917402545915308612577227295177102951}{1335651078471435218531892155513853121624685312632534379808834180907716501} a^{8} + \frac{5265806659778974139071152863052277413600780509990983446191053048770115382}{105516435199243382264019480285594396608350139697970216004897900291709603579} a^{7} - \frac{47138749587955976384550892104227685981859171606034263877787160588666740640}{105516435199243382264019480285594396608350139697970216004897900291709603579} a^{6} + \frac{18736399944145262017758798244462654883449404517153485299621286975032223163}{105516435199243382264019480285594396608350139697970216004897900291709603579} a^{5} - \frac{14447113989673259046636322106667103930088130381496877169649514470987585618}{105516435199243382264019480285594396608350139697970216004897900291709603579} a^{4} + \frac{23325858099082815318241526014114845220945050650723358228073546768668034459}{105516435199243382264019480285594396608350139697970216004897900291709603579} a^{3} - \frac{31477466820352817575173386106987699183137548948540213620334769085106060973}{105516435199243382264019480285594396608350139697970216004897900291709603579} a^{2} + \frac{2810859873275463278536321324986512301785148945755362347978690431635338391}{35172145066414460754673160095198132202783379899323405334965966763903201193} a - \frac{30616442051452442122708341746728194294932760418424154482705730738813137873}{105516435199243382264019480285594396608350139697970216004897900291709603579}$
Class group and class number
$C_{387499}$, which has order $387499$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5135341547.611097 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 7.7.87495801462998035849.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/47.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.24.53 | $x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383$ | $7$ | $2$ | $24$ | $C_{14}$ | $[2]^{2}$ |
| $43$ | 43.14.13.13 | $x^{14} + 1349385563187$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |