Normalized defining polynomial
\( x^{14} - 7 x^{13} + 7 x^{12} + 7 x^{11} + 322 x^{10} - 700 x^{9} + 966 x^{8} - 1217 x^{7} + 27482 x^{6} - 672 x^{5} + 104601 x^{4} + 13965 x^{3} + 797146 x^{2} + 807429 x + 2290621 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-32733449455413964710545859375=-\,3^{7}\cdot 5^{7}\cdot 7^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $108.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(735=3\cdot 5\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{735}(1,·)$, $\chi_{735}(421,·)$, $\chi_{735}(134,·)$, $\chi_{735}(449,·)$, $\chi_{735}(554,·)$, $\chi_{735}(29,·)$, $\chi_{735}(526,·)$, $\chi_{735}(239,·)$, $\chi_{735}(659,·)$, $\chi_{735}(631,·)$, $\chi_{735}(344,·)$, $\chi_{735}(316,·)$, $\chi_{735}(106,·)$, $\chi_{735}(211,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{19} a^{10} - \frac{9}{19} a^{9} - \frac{4}{19} a^{8} + \frac{2}{19} a^{7} - \frac{5}{19} a^{6} + \frac{7}{19} a^{5} + \frac{9}{19} a^{4} - \frac{7}{19} a^{3} - \frac{1}{19} a^{2} + \frac{7}{19} a$, $\frac{1}{589} a^{11} + \frac{12}{589} a^{10} + \frac{244}{589} a^{9} - \frac{139}{589} a^{8} - \frac{58}{589} a^{7} + \frac{263}{589} a^{6} + \frac{175}{589} a^{5} - \frac{236}{589} a^{4} - \frac{262}{589} a^{3} + \frac{43}{589} a^{2} - \frac{43}{589} a$, $\frac{1}{589} a^{12} + \frac{7}{589} a^{10} + \frac{126}{589} a^{9} + \frac{215}{589} a^{8} + \frac{184}{589} a^{7} - \frac{160}{589} a^{6} - \frac{42}{589} a^{5} - \frac{34}{589} a^{4} - \frac{15}{31} a^{3} + \frac{123}{589} a^{2} - \frac{135}{589} a$, $\frac{1}{24427730328100378479544387669} a^{13} - \frac{2261054786297483705410806}{24427730328100378479544387669} a^{12} + \frac{19468078206963442525222018}{24427730328100378479544387669} a^{11} + \frac{119389730203826785569016673}{24427730328100378479544387669} a^{10} + \frac{734640333445762470112818510}{24427730328100378479544387669} a^{9} - \frac{4090899366795463850027322550}{24427730328100378479544387669} a^{8} - \frac{3606418266839087625509834515}{24427730328100378479544387669} a^{7} + \frac{185524120095054316098282795}{24427730328100378479544387669} a^{6} + \frac{6824295983184440222649681821}{24427730328100378479544387669} a^{5} - \frac{8662002307866148147687362315}{24427730328100378479544387669} a^{4} + \frac{10587230119354321780649206546}{24427730328100378479544387669} a^{3} - \frac{10025860669921350594864103746}{24427730328100378479544387669} a^{2} - \frac{6745702226473521966721722918}{24427730328100378479544387669} a + \frac{18009181056712155289446797}{41473226363498095890567721}$
Class group and class number
$C_{12238}$, which has order $12238$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | R | R | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $5$ | 5.14.7.2 | $x^{14} - 15625 x^{2} + 156250$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.14.24.53 | $x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383$ | $7$ | $2$ | $24$ | $C_{14}$ | $[2]^{2}$ |