Normalized defining polynomial
\( x^{14} - 5 x^{13} - 30 x^{12} + 211 x^{11} + 380 x^{10} - 4561 x^{9} + 3573 x^{8} + 38489 x^{7} - 84021 x^{6} - 101414 x^{5} + 750422 x^{4} - 1936270 x^{3} + 3964475 x^{2} - 5606250 x + 6578125 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-319778293622616136151658322211=-\,11^{7}\cdot 71^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(781=11\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{781}(32,·)$, $\chi_{781}(1,·)$, $\chi_{781}(329,·)$, $\chi_{781}(747,·)$, $\chi_{781}(45,·)$, $\chi_{781}(527,·)$, $\chi_{781}(529,·)$, $\chi_{781}(243,·)$, $\chi_{781}(659,·)$, $\chi_{781}(758,·)$, $\chi_{781}(375,·)$, $\chi_{781}(474,·)$, $\chi_{781}(463,·)$, $\chi_{781}(285,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{4}$, $\frac{1}{25} a^{9} + \frac{2}{25} a^{8} - \frac{1}{25} a^{7} - \frac{2}{25} a^{6} - \frac{1}{25} a^{5} + \frac{8}{25} a^{4} - \frac{4}{25} a^{3} - \frac{8}{25} a^{2} + \frac{1}{5} a$, $\frac{1}{25} a^{10} - \frac{2}{25} a^{6} + \frac{1}{25} a^{2}$, $\frac{1}{25} a^{11} - \frac{2}{25} a^{7} + \frac{1}{25} a^{3}$, $\frac{1}{10625} a^{12} - \frac{127}{10625} a^{11} - \frac{11}{10625} a^{10} - \frac{22}{10625} a^{9} + \frac{314}{10625} a^{8} + \frac{506}{10625} a^{7} + \frac{791}{10625} a^{6} - \frac{363}{10625} a^{5} + \frac{34}{125} a^{4} + \frac{1381}{10625} a^{3} + \frac{193}{2125} a^{2} - \frac{78}{425} a - \frac{3}{17}$, $\frac{1}{395096767277274207755099375} a^{13} - \frac{7070690104995536835161}{395096767277274207755099375} a^{12} - \frac{1639657912034592778784168}{395096767277274207755099375} a^{11} - \frac{6138182279587974213040823}{395096767277274207755099375} a^{10} - \frac{1751780396112595954904338}{395096767277274207755099375} a^{9} + \frac{1579120833201016870922481}{79019353455454841551019875} a^{8} + \frac{16336137829330572778810812}{395096767277274207755099375} a^{7} - \frac{35364980357199097719293232}{395096767277274207755099375} a^{6} - \frac{2653996084361862448636118}{395096767277274207755099375} a^{5} - \frac{124748607774358763919894704}{395096767277274207755099375} a^{4} + \frac{3830221980464935330857633}{23240986310427894573829375} a^{3} + \frac{27661690757121406759393278}{79019353455454841551019875} a^{2} + \frac{96861170362010188747601}{929639452417115782953175} a - \frac{101956509869058259865694}{632154827643638732408159}$
Class group and class number
$C_{25781}$, which has order $25781$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315114.6966253571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.14.7.2 | $x^{14} - 1771561 x^{2} + 77948684$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $71$ | 71.7.6.1 | $x^{7} - 71$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 71.7.6.1 | $x^{7} - 71$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |