Normalized defining polynomial
\( x^{14} - 5 x^{13} + 20 x^{12} - 49 x^{11} + 288 x^{10} - 863 x^{9} + 4381 x^{8} - 11303 x^{7} + 44797 x^{6} - 86598 x^{5} + 279108 x^{4} - 343260 x^{3} + 959807 x^{2} - 625188 x + 1493501 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-316265035547780605989332299=-\,19^{7}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(551=19\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{551}(1,·)$, $\chi_{551}(227,·)$, $\chi_{551}(132,·)$, $\chi_{551}(455,·)$, $\chi_{551}(170,·)$, $\chi_{551}(400,·)$, $\chi_{551}(210,·)$, $\chi_{551}(20,·)$, $\chi_{551}(286,·)$, $\chi_{551}(343,·)$, $\chi_{551}(248,·)$, $\chi_{551}(436,·)$, $\chi_{551}(284,·)$, $\chi_{551}(94,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{17} a^{10} - \frac{4}{17} a^{9} - \frac{4}{17} a^{8} - \frac{4}{17} a^{6} + \frac{5}{17} a^{5} - \frac{6}{17} a^{4} + \frac{4}{17} a^{3} + \frac{7}{17} a^{2} + \frac{1}{17} a$, $\frac{1}{17} a^{11} - \frac{3}{17} a^{9} + \frac{1}{17} a^{8} - \frac{4}{17} a^{7} + \frac{6}{17} a^{6} - \frac{3}{17} a^{5} - \frac{3}{17} a^{4} + \frac{6}{17} a^{3} - \frac{5}{17} a^{2} + \frac{4}{17} a$, $\frac{1}{17} a^{12} + \frac{6}{17} a^{9} + \frac{1}{17} a^{8} + \frac{6}{17} a^{7} + \frac{2}{17} a^{6} - \frac{5}{17} a^{5} + \frac{5}{17} a^{4} + \frac{7}{17} a^{3} + \frac{8}{17} a^{2} + \frac{3}{17} a$, $\frac{1}{32903291628400118271412547423} a^{13} - \frac{807784048513719894165318142}{32903291628400118271412547423} a^{12} - \frac{188735863466790396954411690}{32903291628400118271412547423} a^{11} - \frac{226468723159612779145778402}{32903291628400118271412547423} a^{10} + \frac{253409941364700427393530199}{1935487742847065780671326319} a^{9} + \frac{16447357766034119915885774648}{32903291628400118271412547423} a^{8} + \frac{2834188163561683030188031608}{32903291628400118271412547423} a^{7} - \frac{28746141854533405642578660}{32903291628400118271412547423} a^{6} + \frac{5769063003892400402246102431}{32903291628400118271412547423} a^{5} - \frac{13122790837545666846549701069}{32903291628400118271412547423} a^{4} + \frac{740289038602904010367900246}{32903291628400118271412547423} a^{3} + \frac{11790727036762957832847944673}{32903291628400118271412547423} a^{2} + \frac{3408877683676717715149810752}{32903291628400118271412547423} a + \frac{500799871958200860111105672}{1935487742847065780671326319}$
Class group and class number
$C_{4}\times C_{4}\times C_{284}$, which has order $4544$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | R | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.14.7.2 | $x^{14} - 376367048 x^{2} + 3575486956$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |