Normalized defining polynomial
\( x^{14} + 28 x^{12} - 42 x^{11} + 1043 x^{10} + 686 x^{9} + 27041 x^{8} + 33840 x^{7} + 508025 x^{6} + 804706 x^{5} + 6352920 x^{4} + 8567650 x^{3} + 48628468 x^{2} + 47642756 x + 178610849 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-31388668949392001335459840000000=-\,2^{21}\cdot 5^{7}\cdot 7^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $177.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1960=2^{3}\cdot 5\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1960}(1,·)$, $\chi_{1960}(1219,·)$, $\chi_{1960}(1121,·)$, $\chi_{1960}(841,·)$, $\chi_{1960}(939,·)$, $\chi_{1960}(1681,·)$, $\chi_{1960}(99,·)$, $\chi_{1960}(659,·)$, $\chi_{1960}(561,·)$, $\chi_{1960}(1779,·)$, $\chi_{1960}(281,·)$, $\chi_{1960}(379,·)$, $\chi_{1960}(1499,·)$, $\chi_{1960}(1401,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{19} a^{9} - \frac{1}{19} a^{8} - \frac{8}{19} a^{7} - \frac{6}{19} a^{6} + \frac{9}{19} a^{5} - \frac{4}{19} a^{4} + \frac{3}{19} a^{3} - \frac{5}{19} a$, $\frac{1}{19} a^{10} - \frac{9}{19} a^{8} + \frac{5}{19} a^{7} + \frac{3}{19} a^{6} + \frac{5}{19} a^{5} - \frac{1}{19} a^{4} + \frac{3}{19} a^{3} - \frac{5}{19} a^{2} - \frac{5}{19} a$, $\frac{1}{19} a^{11} - \frac{4}{19} a^{8} + \frac{7}{19} a^{7} + \frac{8}{19} a^{6} + \frac{4}{19} a^{5} + \frac{5}{19} a^{4} + \frac{3}{19} a^{3} - \frac{5}{19} a^{2} - \frac{7}{19} a$, $\frac{1}{589} a^{12} + \frac{13}{589} a^{11} + \frac{13}{589} a^{10} - \frac{2}{589} a^{9} - \frac{259}{589} a^{8} + \frac{167}{589} a^{7} - \frac{74}{589} a^{6} + \frac{197}{589} a^{5} + \frac{85}{589} a^{4} + \frac{174}{589} a^{3} - \frac{175}{589} a^{2} - \frac{166}{589} a + \frac{12}{31}$, $\frac{1}{101217628958112688241068370459905031} a^{13} - \frac{47828087202342698436619966261840}{101217628958112688241068370459905031} a^{12} - \frac{1726974257978612971731698532375234}{101217628958112688241068370459905031} a^{11} - \frac{1188971992297651048742931558622991}{101217628958112688241068370459905031} a^{10} + \frac{543817830569803930077085669477506}{101217628958112688241068370459905031} a^{9} + \frac{13244358111356022711527424849505904}{101217628958112688241068370459905031} a^{8} - \frac{5427564216369252609616730520022158}{101217628958112688241068370459905031} a^{7} + \frac{13569097779823773904585787165897326}{101217628958112688241068370459905031} a^{6} - \frac{28561406466862370282815181312251321}{101217628958112688241068370459905031} a^{5} + \frac{46188716065018899065274876320402608}{101217628958112688241068370459905031} a^{4} - \frac{20177624259542231227335648286389346}{101217628958112688241068370459905031} a^{3} - \frac{27473418593305594232597018957980828}{101217628958112688241068370459905031} a^{2} + \frac{27377325100066835634857711562605265}{101217628958112688241068370459905031} a - \frac{9219380381107844996195282893176}{171846568689495226215735773276579}$
Class group and class number
$C_{283234}$, which has order $283234$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-10}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | R | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.40 | $x^{14} + 8 x^{13} - 4 x^{12} + 4 x^{11} + 5 x^{10} - 4 x^{9} - 4 x^{8} + 2 x^{7} - x^{6} + 6 x^{5} - 4 x^{4} + 6 x^{3} + 3 x^{2} + 6 x + 3$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $5$ | 5.14.7.2 | $x^{14} - 15625 x^{2} + 156250$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |
| 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |