Normalized defining polynomial
\( x^{14} + 42 x^{12} + 623 x^{10} + 4431 x^{8} + 16513 x^{6} + 31906 x^{4} + 28784 x^{2} + 9409 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3138866894939200133545984=-\,2^{14}\cdot 7^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(196=2^{2}\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{196}(1,·)$, $\chi_{196}(99,·)$, $\chi_{196}(71,·)$, $\chi_{196}(169,·)$, $\chi_{196}(43,·)$, $\chi_{196}(141,·)$, $\chi_{196}(15,·)$, $\chi_{196}(113,·)$, $\chi_{196}(85,·)$, $\chi_{196}(183,·)$, $\chi_{196}(57,·)$, $\chi_{196}(155,·)$, $\chi_{196}(29,·)$, $\chi_{196}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{19} a^{10} + \frac{9}{19} a^{8} - \frac{8}{19} a^{6} - \frac{2}{19} a^{4} + \frac{4}{19} a^{2} + \frac{9}{19}$, $\frac{1}{19} a^{11} + \frac{9}{19} a^{9} - \frac{8}{19} a^{7} - \frac{2}{19} a^{5} + \frac{4}{19} a^{3} + \frac{9}{19} a$, $\frac{1}{884089} a^{12} + \frac{3588}{884089} a^{10} + \frac{11175}{28519} a^{8} + \frac{427860}{884089} a^{6} + \frac{111349}{884089} a^{4} - \frac{312323}{884089} a^{2} + \frac{294943}{884089}$, $\frac{1}{85756633} a^{13} + \frac{1957890}{85756633} a^{11} + \frac{492996}{2766343} a^{9} + \frac{29881983}{85756633} a^{7} + \frac{5043635}{85756633} a^{5} - \frac{34047298}{85756633} a^{3} - \frac{31625323}{85756633} a$
Class group and class number
$C_{71}$, which has order $71$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{31801}{2766343} a^{13} + \frac{1214780}{2766343} a^{11} + \frac{15233526}{2766343} a^{9} + \frac{84420729}{2766343} a^{7} + \frac{220503353}{2766343} a^{5} + \frac{253711850}{2766343} a^{3} + \frac{101685766}{2766343} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.6897369 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| 7 | Data not computed | ||||||