Normalized defining polynomial
\( x^{14} - 4 x^{13} - 12 x^{12} + 161 x^{11} - 449 x^{10} - 1757 x^{9} + 11853 x^{8} + 867 x^{7} - 57037 x^{6} + 355203 x^{5} + 662185 x^{4} - 562305 x^{3} + 1085079 x^{2} + 4992495 x + 4158745 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-312475498577452580635859375=-\,5^{7}\cdot 23^{7}\cdot 53^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 23, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{725} a^{11} + \frac{27}{725} a^{10} + \frac{18}{725} a^{9} + \frac{13}{725} a^{8} + \frac{189}{725} a^{7} + \frac{62}{145} a^{6} + \frac{194}{725} a^{5} + \frac{253}{725} a^{4} + \frac{293}{725} a^{3} + \frac{267}{725} a^{2} + \frac{8}{29} a - \frac{2}{5}$, $\frac{1}{83375} a^{12} - \frac{1}{16675} a^{11} + \frac{3069}{83375} a^{10} - \frac{5638}{83375} a^{9} - \frac{54}{3625} a^{8} + \frac{9922}{83375} a^{7} + \frac{14489}{83375} a^{6} - \frac{99}{3335} a^{5} + \frac{474}{3625} a^{4} + \frac{21051}{83375} a^{3} + \frac{40811}{83375} a^{2} + \frac{49}{725} a + \frac{3}{25}$, $\frac{1}{1190144010047082711312964740875} a^{13} - \frac{265951299060938072472094}{47605760401883308452518589635} a^{12} + \frac{310157504978921592473420894}{1190144010047082711312964740875} a^{11} - \frac{91390996229901832024807721418}{1190144010047082711312964740875} a^{10} - \frac{39916336847767415883940921657}{1190144010047082711312964740875} a^{9} + \frac{547766191956580609977142126}{8687182555088194973087333875} a^{8} - \frac{161150701266195078513051143976}{1190144010047082711312964740875} a^{7} + \frac{26255435989418066024244494614}{238028802009416542262592948175} a^{6} - \frac{184007589388023460039182721173}{1190144010047082711312964740875} a^{5} + \frac{8859189102951967303894706961}{1190144010047082711312964740875} a^{4} + \frac{95342192737917962355835191966}{1190144010047082711312964740875} a^{3} + \frac{32741555601462918037836295148}{238028802009416542262592948175} a^{2} + \frac{2734506621691526481293346807}{10349078348235501837504041225} a + \frac{10652900796896462329460478}{71372954125762081637958905}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14321935.1855 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-6095}) \), 7.1.226423307375.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.226423307375.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/29.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $53$ | 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.2.1.1 | $x^{2} - 53$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |