Normalized defining polynomial
\( x^{14} + 42 x^{12} - 364 x^{11} - 623 x^{10} - 16044 x^{9} - 2212 x^{8} + 35808 x^{7} + 1564080 x^{6} + 5717824 x^{5} + 40943168 x^{4} + 117175296 x^{3} + 397307904 x^{2} + 540954624 x + 1476661248 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-31178282477375587773786611936919552=-\,2^{21}\cdot 3^{8}\cdot 7^{20}\cdot 73^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $290.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} + \frac{1}{16} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{32} a^{7} - \frac{1}{32} a^{6} - \frac{1}{32} a^{5} + \frac{1}{32} a^{4} - \frac{1}{8} a^{3} - \frac{1}{8} a^{2}$, $\frac{1}{64} a^{8} - \frac{1}{64} a^{7} - \frac{1}{64} a^{6} + \frac{1}{64} a^{5} - \frac{1}{16} a^{4} - \frac{1}{16} a^{3}$, $\frac{1}{768} a^{9} - \frac{1}{128} a^{8} - \frac{5}{384} a^{7} + \frac{5}{192} a^{6} - \frac{11}{768} a^{5} + \frac{17}{384} a^{4} + \frac{23}{192} a^{3} + \frac{5}{32} a^{2} - \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{3072} a^{10} + \frac{7}{1536} a^{8} - \frac{7}{768} a^{7} - \frac{71}{3072} a^{6} + \frac{13}{768} a^{5} + \frac{17}{192} a^{4} - \frac{1}{64} a^{3} - \frac{5}{64} a^{2} + \frac{3}{8} a - \frac{1}{8}$, $\frac{1}{12288} a^{11} - \frac{1}{6144} a^{10} - \frac{1}{6144} a^{9} - \frac{1}{1536} a^{8} - \frac{95}{12288} a^{7} + \frac{3}{2048} a^{6} - \frac{71}{1536} a^{5} + \frac{7}{768} a^{4} - \frac{17}{768} a^{3} + \frac{1}{128} a^{2} - \frac{7}{32} a + \frac{1}{16}$, $\frac{1}{2727936} a^{12} + \frac{13}{454656} a^{11} + \frac{131}{1363968} a^{10} - \frac{53}{340992} a^{9} - \frac{3631}{2727936} a^{8} - \frac{4031}{1363968} a^{7} + \frac{613}{170496} a^{6} - \frac{2215}{170496} a^{5} + \frac{11335}{170496} a^{4} + \frac{1637}{28416} a^{3} + \frac{209}{1776} a^{2} + \frac{1349}{3552} a - \frac{147}{296}$, $\frac{1}{200913068275054580845934641152} a^{13} + \frac{609364796310854010539}{25114133534381822605741830144} a^{12} - \frac{1377371444437068303370735}{100456534137527290422967320576} a^{11} - \frac{1111810173748422325502069}{16742755689587881737161220096} a^{10} - \frac{1765218471908812713405299}{5430082926352826509349584896} a^{9} - \frac{374239568319792665400827549}{50228267068763645211483660288} a^{8} - \frac{73901809582813045260245531}{5580918563195960579053740032} a^{7} + \frac{1127981271229580729540563}{110149708484130800902376448} a^{6} - \frac{4735756300385342206133959}{220299416968261601804752896} a^{5} - \frac{388551235862727592831805621}{3139266691797727825717728768} a^{4} + \frac{35250205764169900128625175}{348807410199747536190858752} a^{3} + \frac{121650170496509983515165}{1362528946092763813245542} a^{2} + \frac{43610369589028150844568595}{130802778824905326071572032} a + \frac{2079870521362592243521591}{5450115784371055252982168}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 177351190608000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 882 |
| The 20 conjugacy class representatives for 1/2[1/2.F_42(7)^2]2 |
| Character table for 1/2[1/2.F_42(7)^2]2 |
Intermediate fields
| \(\Q(\sqrt{-2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7 | Data not computed | ||||||
| $73$ | $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 73.3.2.2 | $x^{3} + 365$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.2 | $x^{3} + 365$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.7.0.1 | $x^{7} - 3 x + 13$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |