Normalized defining polynomial
\( x^{14} + 609 x^{12} + 127890 x^{10} + 11548467 x^{8} + 439916022 x^{6} + 6395702166 x^{4} + 32333827617 x^{2} + 52231567689 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-302781248280417347338001059823616=-\,2^{14}\cdot 3^{7}\cdot 7^{7}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $208.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2436=2^{2}\cdot 3\cdot 7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2436}(1,·)$, $\chi_{2436}(2435,·)$, $\chi_{2436}(1093,·)$, $\chi_{2436}(2017,·)$, $\chi_{2436}(169,·)$, $\chi_{2436}(167,·)$, $\chi_{2436}(1427,·)$, $\chi_{2436}(1009,·)$, $\chi_{2436}(419,·)$, $\chi_{2436}(2267,·)$, $\chi_{2436}(1343,·)$, $\chi_{2436}(671,·)$, $\chi_{2436}(2269,·)$, $\chi_{2436}(1765,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{21} a^{2}$, $\frac{1}{21} a^{3}$, $\frac{1}{441} a^{4}$, $\frac{1}{441} a^{5}$, $\frac{1}{9261} a^{6}$, $\frac{1}{9261} a^{7}$, $\frac{1}{194481} a^{8}$, $\frac{1}{194481} a^{9}$, $\frac{1}{69429717} a^{10} - \frac{5}{3306177} a^{8} + \frac{1}{52479} a^{6} - \frac{4}{7497} a^{4} + \frac{1}{51} a^{2} - \frac{6}{17}$, $\frac{1}{69429717} a^{11} - \frac{5}{3306177} a^{9} + \frac{1}{52479} a^{7} - \frac{4}{7497} a^{5} + \frac{1}{51} a^{3} - \frac{6}{17} a$, $\frac{1}{3526960193883} a^{12} - \frac{25}{55983495141} a^{10} + \frac{15347}{7997642163} a^{8} + \frac{4598}{126946701} a^{6} - \frac{12361}{18135243} a^{4} - \frac{5577}{287861} a^{2} - \frac{18212}{41123}$, $\frac{1}{3526960193883} a^{13} - \frac{25}{55983495141} a^{11} + \frac{15347}{7997642163} a^{9} + \frac{4598}{126946701} a^{7} - \frac{12361}{18135243} a^{5} - \frac{5577}{287861} a^{3} - \frac{18212}{41123} a$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{4}\times C_{8236}$, which has order $2108416$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-609}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.14.7.2 | $x^{14} - 686 x^{8} + 117649 x^{2} - 3294172$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.14.13.11 | $x^{14} + 3712$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |