Normalized defining polynomial
\( x^{14} - 7 x^{13} + 35 x^{12} - 119 x^{11} + 329 x^{10} - 721 x^{9} + 1337 x^{8} + 1284559 x^{7} - 4500440 x^{6} - 40530910 x^{5} + 112580482 x^{4} + 22513666 x^{3} - 148601642 x^{2} + 40527578 x + 413845826258 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-29898464040397228799207555080392669309147967488=-\,2^{12}\cdot 3^{12}\cdot 7^{11}\cdot 11^{12}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2087.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{21} a^{6} + \frac{2}{21} a^{5} - \frac{1}{7} a^{4} + \frac{1}{21} a^{3} + \frac{3}{7} a^{2} + \frac{4}{21} a - \frac{2}{7}$, $\frac{1}{21} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{2}{21}$, $\frac{1}{1197} a^{8} - \frac{4}{1197} a^{7} + \frac{2}{171} a^{6} - \frac{4}{171} a^{5} + \frac{7}{171} a^{4} - \frac{8}{171} a^{3} + \frac{8}{171} a^{2} + \frac{481}{1197} a + \frac{358}{1197}$, $\frac{1}{1197} a^{9} - \frac{2}{1197} a^{7} + \frac{4}{171} a^{6} - \frac{1}{19} a^{5} + \frac{20}{171} a^{4} - \frac{8}{57} a^{3} - \frac{164}{399} a^{2} - \frac{16}{171} a + \frac{235}{1197}$, $\frac{1}{8379} a^{10} + \frac{1}{8379} a^{9} - \frac{2}{8379} a^{8} + \frac{83}{8379} a^{7} - \frac{5}{1197} a^{6} - \frac{160}{1197} a^{5} - \frac{4}{1197} a^{4} + \frac{237}{931} a^{3} + \frac{3785}{8379} a^{2} + \frac{191}{931} a - \frac{3470}{8379}$, $\frac{1}{8379} a^{11} - \frac{1}{2793} a^{9} + \frac{1}{8379} a^{8} - \frac{181}{8379} a^{7} + \frac{1}{63} a^{6} - \frac{1}{57} a^{5} - \frac{758}{8379} a^{4} - \frac{346}{1197} a^{3} + \frac{811}{8379} a^{2} + \frac{3085}{8379} a + \frac{1727}{8379}$, $\frac{1}{25137} a^{12} + \frac{4}{25137} a^{9} + \frac{1}{2793} a^{8} - \frac{134}{8379} a^{7} + \frac{2}{513} a^{6} - \frac{358}{2793} a^{5} - \frac{118}{1197} a^{4} - \frac{1678}{3591} a^{3} - \frac{167}{931} a^{2} + \frac{1667}{8379} a - \frac{4082}{25137}$, $\frac{1}{1781544021126816802886406569743409708667} a^{13} + \frac{1137187306261040970565591435285229}{1781544021126816802886406569743409708667} a^{12} - \frac{26341033044922481569857752350484548}{593848007042272267628802189914469902889} a^{11} - \frac{20157663048454007228544362640444833}{1781544021126816802886406569743409708667} a^{10} + \frac{23656743263423146131918164736516005}{93765474796148252783495082618074195193} a^{9} - \frac{38770199131669151764716922343073056}{593848007042272267628802189914469902889} a^{8} + \frac{227135736440998490577585947607583910}{93765474796148252783495082618074195193} a^{7} - \frac{15655356354845389936780425275363445275}{1781544021126816802886406569743409708667} a^{6} - \frac{55545298882817551985396517334036109348}{593848007042272267628802189914469902889} a^{5} - \frac{76133404482749969972832508422196401421}{1781544021126816802886406569743409708667} a^{4} + \frac{828775730200243673086395950457303666856}{1781544021126816802886406569743409708667} a^{3} + \frac{50440132336728928632482791807003299101}{197949335680757422542934063304823300963} a^{2} - \frac{433493208491727738081325668966533414216}{1781544021126816802886406569743409708667} a - \frac{287721605340749388208582746030518942743}{1781544021126816802886406569743409708667}$
Class group and class number
Not computed
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 42 |
| The 7 conjugacy class representatives for $F_7$ |
| Character table for $F_7$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.1.65354488358705521601472.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 7 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| $3$ | 3.14.12.1 | $x^{14} - 3 x^{7} + 18$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $11$ | 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| $19$ | 19.14.12.1 | $x^{14} - 19 x^{7} + 722$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ |