Normalized defining polynomial
\( x^{14} - x^{13} + 33 x^{12} - 1441 x^{11} + 10483 x^{10} - 61103 x^{9} + 1749062 x^{8} - 12988271 x^{7} + 107210133 x^{6} - 265496895 x^{5} + 869735265 x^{4} - 2748137801 x^{3} + 6431287949 x^{2} - 8581811296 x + 5270284469 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-297672627318406929279256927821316759631=-\,911^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $559.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $911$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(911\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{911}(1,·)$, $\chi_{911}(130,·)$, $\chi_{911}(579,·)$, $\chi_{911}(7,·)$, $\chi_{911}(904,·)$, $\chi_{911}(332,·)$, $\chi_{911}(781,·)$, $\chi_{911}(910,·)$, $\chi_{911}(49,·)$, $\chi_{911}(502,·)$, $\chi_{911}(343,·)$, $\chi_{911}(568,·)$, $\chi_{911}(409,·)$, $\chi_{911}(862,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{437} a^{11} - \frac{156}{437} a^{10} + \frac{191}{437} a^{9} - \frac{132}{437} a^{8} - \frac{55}{437} a^{7} - \frac{110}{437} a^{6} + \frac{160}{437} a^{5} - \frac{212}{437} a^{4} + \frac{13}{437} a^{3} - \frac{68}{437} a^{2} + \frac{162}{437} a - \frac{7}{19}$, $\frac{1}{13547} a^{12} - \frac{7}{13547} a^{11} + \frac{5789}{13547} a^{10} - \frac{3137}{13547} a^{9} - \frac{1806}{13547} a^{8} - \frac{1750}{13547} a^{7} + \frac{6494}{13547} a^{6} - \frac{3903}{13547} a^{5} - \frac{3607}{13547} a^{4} - \frac{3375}{13547} a^{3} + \frac{6199}{13547} a^{2} + \frac{125}{437} a + \frac{154}{589}$, $\frac{1}{117467968421640139188037720148325174400008750212998740704543} a^{13} + \frac{3954363032386756772182359338383481405861354533279710639}{117467968421640139188037720148325174400008750212998740704543} a^{12} - \frac{100589479415741138384854873331502515524368103364491840187}{117467968421640139188037720148325174400008750212998740704543} a^{11} + \frac{26189278928226208489678099945279817415933677086768425148469}{117467968421640139188037720148325174400008750212998740704543} a^{10} - \frac{55868947298828494204158321658870600536844156249711444333025}{117467968421640139188037720148325174400008750212998740704543} a^{9} + \frac{17999611560456475768681324237864308323232500933608468864920}{117467968421640139188037720148325174400008750212998740704543} a^{8} - \frac{18738554361145755415108557447673563564756163634523381631968}{117467968421640139188037720148325174400008750212998740704543} a^{7} + \frac{31805910214055212461731404788187890083503394697934492614385}{117467968421640139188037720148325174400008750212998740704543} a^{6} + \frac{5476529962094856538260626810875252916706081880262487430097}{117467968421640139188037720148325174400008750212998740704543} a^{5} + \frac{16438587633349820114654065616761394188681418044697952742281}{117467968421640139188037720148325174400008750212998740704543} a^{4} - \frac{40918152787278843158436503884322518758937422898582968857337}{117467968421640139188037720148325174400008750212998740704543} a^{3} - \frac{34133574838338865375445889347678197946847500015070783897184}{117467968421640139188037720148325174400008750212998740704543} a^{2} - \frac{10948609945554525070987504427355833340606256758935255307786}{117467968421640139188037720148325174400008750212998740704543} a + \frac{106664689697656874072421905262416760695717810986342918214}{5107302974853919095132074789057616278261250009260814813241}$
Class group and class number
$C_{161479}$, which has order $161479$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 504165333.8519378 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-911}) \), 7.7.571623746239596961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 911 | Data not computed | ||||||