Normalized defining polynomial
\( x^{14} + 602 x^{12} + 117992 x^{10} + 9321368 x^{8} + 327073824 x^{6} + 4856550720 x^{4} + 22987673408 x^{2} + 4532780672 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2967605119190429807728658374197248=-\,2^{21}\cdot 7^{7}\cdot 43^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $245.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2408=2^{3}\cdot 7\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2408}(1,·)$, $\chi_{2408}(419,·)$, $\chi_{2408}(1681,·)$, $\chi_{2408}(2185,·)$, $\chi_{2408}(1931,·)$, $\chi_{2408}(1427,·)$, $\chi_{2408}(27,·)$, $\chi_{2408}(785,·)$, $\chi_{2408}(1203,·)$, $\chi_{2408}(1569,·)$, $\chi_{2408}(1177,·)$, $\chi_{2408}(729,·)$, $\chi_{2408}(2043,·)$, $\chi_{2408}(475,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{14} a^{2}$, $\frac{1}{14} a^{3}$, $\frac{1}{196} a^{4}$, $\frac{1}{196} a^{5}$, $\frac{1}{19208} a^{6} + \frac{1}{7}$, $\frac{1}{19208} a^{7} + \frac{1}{7} a$, $\frac{1}{268912} a^{8} + \frac{1}{98} a^{2}$, $\frac{1}{268912} a^{9} + \frac{1}{98} a^{3}$, $\frac{1}{139296416} a^{10} - \frac{1}{2487436} a^{8} + \frac{9}{710696} a^{6} - \frac{59}{25382} a^{4} + \frac{19}{1813} a^{2} - \frac{54}{259}$, $\frac{1}{139296416} a^{11} - \frac{1}{2487436} a^{9} + \frac{9}{710696} a^{7} - \frac{59}{25382} a^{5} + \frac{19}{1813} a^{3} - \frac{54}{259} a$, $\frac{1}{7549029968704} a^{12} + \frac{261}{77030918048} a^{10} - \frac{699}{786029776} a^{8} + \frac{28771}{1375552108} a^{6} - \frac{45253}{28072492} a^{4} + \frac{646}{143227} a^{2} - \frac{348032}{1002589}$, $\frac{1}{7549029968704} a^{13} + \frac{261}{77030918048} a^{11} - \frac{699}{786029776} a^{9} + \frac{28771}{1375552108} a^{7} - \frac{45253}{28072492} a^{5} + \frac{646}{143227} a^{3} - \frac{348032}{1002589} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{31764}$, which has order $4065792$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35991.64185055774 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-602}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.40 | $x^{14} + 8 x^{13} - 4 x^{12} + 4 x^{11} + 5 x^{10} - 4 x^{9} - 4 x^{8} + 2 x^{7} - x^{6} + 6 x^{5} - 4 x^{4} + 6 x^{3} + 3 x^{2} + 6 x + 3$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $43$ | 43.14.13.11 | $x^{14} + 205667667$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |