Normalized defining polynomial
\( x^{14} - 5 x^{13} - x^{12} + 41 x^{11} - 266 x^{9} + 682 x^{8} - 1271 x^{7} + 3346 x^{6} - 5784 x^{5} + 12267 x^{4} - 10251 x^{3} + 20954 x^{2} - 13581 x + 22271 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-291381688005381590432263=-\,7^{7}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(203=7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{203}(1,·)$, $\chi_{203}(36,·)$, $\chi_{203}(197,·)$, $\chi_{203}(169,·)$, $\chi_{203}(139,·)$, $\chi_{203}(141,·)$, $\chi_{203}(78,·)$, $\chi_{203}(111,·)$, $\chi_{203}(146,·)$, $\chi_{203}(83,·)$, $\chi_{203}(20,·)$, $\chi_{203}(181,·)$, $\chi_{203}(132,·)$, $\chi_{203}(190,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{17} a^{12} + \frac{7}{17} a^{11} + \frac{7}{17} a^{10} + \frac{1}{17} a^{9} + \frac{7}{17} a^{8} - \frac{3}{17} a^{7} - \frac{5}{17} a^{6} + \frac{2}{17} a^{5} - \frac{7}{17} a^{4} - \frac{2}{17} a^{3} + \frac{8}{17} a^{2} - \frac{7}{17} a - \frac{2}{17}$, $\frac{1}{7128637193852842930567619} a^{13} - \frac{37155731070647142154817}{7128637193852842930567619} a^{12} + \frac{2661868916722742561928735}{7128637193852842930567619} a^{11} - \frac{2582694832433361145157711}{7128637193852842930567619} a^{10} + \frac{2485176271848327902126325}{7128637193852842930567619} a^{9} - \frac{2553674143582852068965825}{7128637193852842930567619} a^{8} + \frac{1606673425022783983741185}{7128637193852842930567619} a^{7} - \frac{1233526684624262182172077}{7128637193852842930567619} a^{6} - \frac{954693908923000428684579}{7128637193852842930567619} a^{5} + \frac{1837579390230127068539526}{7128637193852842930567619} a^{4} + \frac{1244147559999672282462241}{7128637193852842930567619} a^{3} - \frac{1530263496431078504431487}{7128637193852842930567619} a^{2} - \frac{2395592671139232881680747}{7128637193852842930567619} a - \frac{2946418936156182282268782}{7128637193852842930567619}$
Class group and class number
$C_{2}\times C_{2}\times C_{14}$, which has order $56$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.98510015 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |