Normalized defining polynomial
\( x^{14} + 109 x^{12} + 4094 x^{10} + 64587 x^{8} + 492142 x^{6} + 1843230 x^{4} + 3006113 x^{2} + 1256641 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-288446046473761001831902756864=-\,2^{14}\cdot 127^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $127.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(508=2^{2}\cdot 127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{508}(1,·)$, $\chi_{508}(131,·)$, $\chi_{508}(389,·)$, $\chi_{508}(129,·)$, $\chi_{508}(135,·)$, $\chi_{508}(255,·)$, $\chi_{508}(397,·)$, $\chi_{508}(143,·)$, $\chi_{508}(385,·)$, $\chi_{508}(159,·)$, $\chi_{508}(413,·)$, $\chi_{508}(383,·)$, $\chi_{508}(445,·)$, $\chi_{508}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{19} a^{9} - \frac{2}{19} a^{5} - \frac{4}{19} a^{3} + \frac{6}{19} a$, $\frac{1}{19} a^{10} - \frac{2}{19} a^{6} - \frac{4}{19} a^{4} + \frac{6}{19} a^{2}$, $\frac{1}{19} a^{11} - \frac{2}{19} a^{7} - \frac{4}{19} a^{5} + \frac{6}{19} a^{3}$, $\frac{1}{57239059938779} a^{12} - \frac{135053806380}{57239059938779} a^{10} + \frac{14590950582308}{57239059938779} a^{8} - \frac{15786809299961}{57239059938779} a^{6} + \frac{21510302041156}{57239059938779} a^{4} - \frac{13985683067971}{57239059938779} a^{2} - \frac{23932214569}{158556952739}$, $\frac{1}{3377104536387961} a^{13} - \frac{57374113745159}{3377104536387961} a^{11} - \frac{78799094580963}{3377104536387961} a^{9} - \frac{1618480487585773}{3377104536387961} a^{7} + \frac{1467549711020836}{3377104536387961} a^{5} + \frac{1389877576483135}{3377104536387961} a^{3} - \frac{75135036816880}{177742344020419} a$
Class group and class number
$C_{43}\times C_{43}$, which has order $1849$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{29044491}{4803847135687} a^{13} + \frac{2992453239}{4803847135687} a^{11} + \frac{101063475145}{4803847135687} a^{9} + \frac{1275353197206}{4803847135687} a^{7} + \frac{6810120369448}{4803847135687} a^{5} + \frac{15275138281654}{4803847135687} a^{3} + \frac{13225094631112}{4803847135687} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 546287.2103473756 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 7.7.4195872914689.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $127$ | 127.14.12.1 | $x^{14} + 10541 x^{7} + 35274123$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |