Normalized defining polynomial
\( x^{14} - 10 x^{12} + 183 x^{10} + 193 x^{8} + 163 x^{6} - 1427 x^{4} + 1122 x^{2} + 1163 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2877782737305190278467=-\,1163^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{5}{16}$, $\frac{1}{16} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{5}{16} a$, $\frac{1}{32} a^{8} - \frac{1}{32} a^{7} - \frac{1}{32} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{32} a^{2} + \frac{5}{32} a + \frac{9}{32}$, $\frac{1}{32} a^{9} - \frac{1}{32} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{5}{32} a^{3} - \frac{3}{8} a^{2} - \frac{3}{8} a - \frac{11}{32}$, $\frac{1}{256} a^{10} - \frac{3}{256} a^{8} - \frac{1}{32} a^{7} + \frac{1}{256} a^{6} - \frac{1}{8} a^{5} - \frac{21}{256} a^{4} + \frac{1}{8} a^{3} + \frac{111}{256} a^{2} - \frac{11}{32} a - \frac{85}{256}$, $\frac{1}{256} a^{11} - \frac{3}{256} a^{9} - \frac{7}{256} a^{7} - \frac{1}{32} a^{6} - \frac{53}{256} a^{5} - \frac{1}{8} a^{4} + \frac{15}{256} a^{3} + \frac{1}{8} a^{2} + \frac{83}{256} a + \frac{5}{32}$, $\frac{1}{44894720} a^{12} - \frac{1}{512} a^{11} - \frac{21269}{11223680} a^{10} - \frac{5}{512} a^{9} - \frac{1569}{11223680} a^{8} + \frac{7}{512} a^{7} + \frac{243277}{22447360} a^{6} - \frac{43}{512} a^{5} - \frac{1500899}{11223680} a^{4} - \frac{103}{512} a^{3} - \frac{1185799}{11223680} a^{2} + \frac{13}{512} a - \frac{22104187}{44894720}$, $\frac{1}{44894720} a^{13} + \frac{2609}{44894720} a^{11} - \frac{1}{512} a^{10} + \frac{432149}{44894720} a^{9} - \frac{5}{512} a^{8} - \frac{127241}{44894720} a^{7} + \frac{7}{512} a^{6} - \frac{2233141}{44894720} a^{5} - \frac{43}{512} a^{4} + \frac{4288359}{44894720} a^{3} - \frac{103}{512} a^{2} + \frac{5412657}{11223680} a + \frac{13}{512}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 368283.101041 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-1163}) \), 7.1.1573037747.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.1573037747.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1163 | Data not computed | ||||||