Normalized defining polynomial
\( x^{14} - 5 x^{13} - 181 x^{12} + 565 x^{11} + 12356 x^{10} - 21350 x^{9} - 337442 x^{8} + 673209 x^{7} + 4463486 x^{6} - 11390256 x^{5} - 21789837 x^{4} + 79245585 x^{3} + 47158292 x^{2} - 355150475 x + 438678011 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-28606260651310274757079509174248503=-\,7^{7}\cdot 239^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $289.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1673=7\cdot 239\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1673}(1056,·)$, $\chi_{1673}(1,·)$, $\chi_{1673}(1219,·)$, $\chi_{1673}(741,·)$, $\chi_{1673}(1478,·)$, $\chi_{1673}(1000,·)$, $\chi_{1673}(1196,·)$, $\chi_{1673}(337,·)$, $\chi_{1673}(1205,·)$, $\chi_{1673}(918,·)$, $\chi_{1673}(727,·)$, $\chi_{1673}(440,·)$, $\chi_{1673}(1532,·)$, $\chi_{1673}(1534,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{23} a^{9} - \frac{8}{23} a^{8} - \frac{10}{23} a^{7} - \frac{1}{23} a^{6} + \frac{2}{23} a^{5} - \frac{5}{23} a^{4} - \frac{2}{23} a^{3} + \frac{7}{23} a^{2} - \frac{9}{23} a$, $\frac{1}{23} a^{10} - \frac{5}{23} a^{8} + \frac{11}{23} a^{7} - \frac{6}{23} a^{6} + \frac{11}{23} a^{5} + \frac{4}{23} a^{4} - \frac{9}{23} a^{3} + \frac{1}{23} a^{2} - \frac{3}{23} a$, $\frac{1}{23} a^{11} - \frac{6}{23} a^{8} - \frac{10}{23} a^{7} + \frac{6}{23} a^{6} - \frac{9}{23} a^{5} - \frac{11}{23} a^{4} - \frac{9}{23} a^{3} + \frac{9}{23} a^{2} + \frac{1}{23} a$, $\frac{1}{10323343} a^{12} + \frac{221288}{10323343} a^{11} - \frac{1149}{448841} a^{10} + \frac{137619}{10323343} a^{9} + \frac{104666}{10323343} a^{8} - \frac{422392}{10323343} a^{7} + \frac{5028748}{10323343} a^{6} - \frac{2763175}{10323343} a^{5} - \frac{3531725}{10323343} a^{4} + \frac{3216850}{10323343} a^{3} + \frac{340627}{10323343} a^{2} - \frac{412483}{10323343} a + \frac{214016}{448841}$, $\frac{1}{35203662682407731687729534859743155831927} a^{13} + \frac{1571370371299645006411352870322556}{35203662682407731687729534859743155831927} a^{12} - \frac{328600998098186482885685753065118324}{1530594029669901377727371080858398079649} a^{11} + \frac{568473073128897617458227596432083844633}{35203662682407731687729534859743155831927} a^{10} + \frac{652822132168416987225235089292815415451}{35203662682407731687729534859743155831927} a^{9} - \frac{2111256207307092600496202217820601180257}{35203662682407731687729534859743155831927} a^{8} + \frac{10077761831568072344448195040372621338478}{35203662682407731687729534859743155831927} a^{7} + \frac{13010341067209153399710128705313996548992}{35203662682407731687729534859743155831927} a^{6} - \frac{12676517351630051337650935075165280511966}{35203662682407731687729534859743155831927} a^{5} + \frac{13979195505536368838834543768492169412666}{35203662682407731687729534859743155831927} a^{4} - \frac{16389865340579019946605614733865406011047}{35203662682407731687729534859743155831927} a^{3} - \frac{11072969943773071677449048750060592854574}{35203662682407731687729534859743155831927} a^{2} + \frac{304738506561906264704848214318190070367}{1530594029669901377727371080858398079649} a - \frac{25649828659481908210450825960935220253}{66547566507387016422929177428626003463}$
Class group and class number
$C_{2}\times C_{2}\times C_{26278}$, which has order $105112$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3022802.0673343516 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.186374892382561.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.7.1 | $x^{14} - 117649 x^{2} + 1647086$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 239 | Data not computed | ||||||