Normalized defining polynomial
\( x^{14} - 2 x^{13} + 39 x^{12} - 114 x^{11} + 2254 x^{10} - 1600 x^{9} + 65883 x^{8} - 46196 x^{7} + 1547230 x^{6} + 479562 x^{5} + 31057338 x^{4} + 34059520 x^{3} + 395200525 x^{2} + 349151250 x + 2163359375 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-28341078543880537818112953392562176=-\,2^{21}\cdot 7^{7}\cdot 71^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $288.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3976=2^{3}\cdot 7\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3976}(897,·)$, $\chi_{3976}(2309,·)$, $\chi_{3976}(1,·)$, $\chi_{3976}(517,·)$, $\chi_{3976}(1805,·)$, $\chi_{3976}(3653,·)$, $\chi_{3976}(1681,·)$, $\chi_{3976}(1749,·)$, $\chi_{3976}(853,·)$, $\chi_{3976}(1457,·)$, $\chi_{3976}(953,·)$, $\chi_{3976}(2801,·)$, $\chi_{3976}(3641,·)$, $\chi_{3976}(2533,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{4}$, $\frac{1}{25} a^{9} + \frac{1}{25} a^{8} + \frac{1}{25} a^{7} + \frac{1}{25} a^{6} - \frac{1}{25} a^{5} + \frac{9}{25} a^{4} + \frac{9}{25} a^{3} + \frac{9}{25} a^{2} + \frac{2}{5} a$, $\frac{1}{25} a^{10} - \frac{2}{25} a^{6} + \frac{1}{25} a^{2}$, $\frac{1}{25} a^{11} - \frac{2}{25} a^{7} + \frac{1}{25} a^{3}$, $\frac{1}{2125} a^{12} + \frac{36}{2125} a^{11} + \frac{12}{2125} a^{10} + \frac{1}{125} a^{9} - \frac{31}{425} a^{8} - \frac{19}{425} a^{7} + \frac{208}{2125} a^{6} + \frac{53}{2125} a^{5} + \frac{999}{2125} a^{4} - \frac{1046}{2125} a^{3} + \frac{1}{17} a^{2} + \frac{13}{85} a + \frac{8}{17}$, $\frac{1}{9430067864540801943453152318862293125} a^{13} - \frac{1478431134123157038978569093246222}{9430067864540801943453152318862293125} a^{12} - \frac{78490459870494641287697413110894531}{9430067864540801943453152318862293125} a^{11} - \frac{75568600557997116888986861565673804}{9430067864540801943453152318862293125} a^{10} + \frac{47849235270775050990710225201081339}{9430067864540801943453152318862293125} a^{9} + \frac{21043277176519738606461595066780043}{377202714581632077738126092754491725} a^{8} + \frac{398129693781898264532792935727966783}{9430067864540801943453152318862293125} a^{7} - \frac{557776671441884063195977011910533656}{9430067864540801943453152318862293125} a^{6} - \frac{95524777431045945600840694629818501}{1886013572908160388690630463772458625} a^{5} - \frac{2269861635817608845503929786953875793}{9430067864540801943453152318862293125} a^{4} - \frac{1687775297835293926474014367814108267}{9430067864540801943453152318862293125} a^{3} - \frac{290160209060451756383422786330894021}{1886013572908160388690630463772458625} a^{2} - \frac{46966472380047430227036058492332424}{377202714581632077738126092754491725} a - \frac{7102938590422184687288126648170134}{15088108583265283109525043710179669}$
Class group and class number
$C_{7568372}$, which has order $7568372$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315114.6966253571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-14}) \), 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{14}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.34 | $x^{14} + 4 x^{13} + 8 x^{12} + 4 x^{11} + 5 x^{10} + 8 x^{9} - 6 x^{8} - 6 x^{7} + x^{6} + 6 x^{5} + 2 x^{3} + 7 x^{2} + 6 x - 7$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $7$ | 7.14.7.1 | $x^{14} - 117649 x^{2} + 1647086$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $71$ | 71.7.6.1 | $x^{7} - 71$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 71.7.6.1 | $x^{7} - 71$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |