Normalized defining polynomial
\( x^{14} - x^{13} + 219 x^{12} - 220 x^{11} + 16306 x^{10} - 16527 x^{9} + 511395 x^{8} - 656208 x^{7} + 6613602 x^{6} - 13821758 x^{5} + 40437938 x^{4} - 87114552 x^{3} + 233636092 x^{2} - 233359527 x + 232170751 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-282296718315876607143916888979=-\,29^{13}\cdot 31^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $126.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(899=29\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{899}(1,·)$, $\chi_{899}(898,·)$, $\chi_{899}(805,·)$, $\chi_{899}(807,·)$, $\chi_{899}(745,·)$, $\chi_{899}(683,·)$, $\chi_{899}(557,·)$, $\chi_{899}(526,·)$, $\chi_{899}(373,·)$, $\chi_{899}(342,·)$, $\chi_{899}(216,·)$, $\chi_{899}(154,·)$, $\chi_{899}(92,·)$, $\chi_{899}(94,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{17} a^{11} - \frac{8}{17} a^{10} - \frac{5}{17} a^{9} - \frac{2}{17} a^{8} + \frac{6}{17} a^{7} + \frac{5}{17} a^{6} + \frac{3}{17} a^{5} - \frac{1}{17} a^{4} + \frac{7}{17} a^{3} - \frac{1}{17} a$, $\frac{1}{17} a^{12} - \frac{1}{17} a^{10} - \frac{8}{17} a^{9} + \frac{7}{17} a^{8} + \frac{2}{17} a^{7} - \frac{8}{17} a^{6} + \frac{6}{17} a^{5} - \frac{1}{17} a^{4} + \frac{5}{17} a^{3} - \frac{1}{17} a^{2} - \frac{8}{17} a$, $\frac{1}{45496369386705545285239680551015051375386704478217807} a^{13} - \frac{1091083610701963123770855689796284447102197537637514}{45496369386705545285239680551015051375386704478217807} a^{12} + \frac{1292859010205682503968589936327691852341628456262458}{45496369386705545285239680551015051375386704478217807} a^{11} - \frac{10202367240583960385390367016301035208951355528128839}{45496369386705545285239680551015051375386704478217807} a^{10} + \frac{18841793243146993351310444002385119085778285456569911}{45496369386705545285239680551015051375386704478217807} a^{9} - \frac{21520784427847083653183829552924208139859862838211499}{45496369386705545285239680551015051375386704478217807} a^{8} + \frac{20423935038058896434349762977192736670831979464691443}{45496369386705545285239680551015051375386704478217807} a^{7} + \frac{18967746049650865035072950976230488641672062530037336}{45496369386705545285239680551015051375386704478217807} a^{6} + \frac{16352621614596963165403772756678158524783513094762774}{45496369386705545285239680551015051375386704478217807} a^{5} + \frac{11372240597140755319661698979169755536796250264730962}{45496369386705545285239680551015051375386704478217807} a^{4} - \frac{14179396201697192778491895373897998970701706685053838}{45496369386705545285239680551015051375386704478217807} a^{3} - \frac{178759781012215122053148554719310731680917851477961}{771124904859416021783723399169746633481130584376573} a^{2} - \frac{921690054029915568653249096571431127563480036313139}{2676257022747385016778804738295003022081570851659871} a + \frac{47315154807208825915416388324885274872735121038933}{157426883691022648045812043429117824828327697156463}$
Class group and class number
$C_{2}\times C_{2}\times C_{14}\times C_{2842}$, which has order $159152$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-899}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | R | R | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.14.13.11 | $x^{14} + 3712$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |
| $31$ | 31.14.7.1 | $x^{14} - 59582 x^{8} + 887503681 x^{2} - 8914086971964$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |