Normalized defining polynomial
\( x^{14} - 5 x^{13} - 145 x^{12} + 341 x^{11} + 8850 x^{10} + 200 x^{9} - 234152 x^{8} - 314915 x^{7} + 2594626 x^{6} + 5538516 x^{5} - 3383529 x^{4} + 10375639 x^{3} + 45137186 x^{2} - 15092353 x + 101385859 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2813720754599325443123783814625063=-\,7^{7}\cdot 197^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $245.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1379=7\cdot 197\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1379}(1,·)$, $\chi_{1379}(36,·)$, $\chi_{1379}(902,·)$, $\chi_{1379}(769,·)$, $\chi_{1379}(104,·)$, $\chi_{1379}(1163,·)$, $\chi_{1379}(1021,·)$, $\chi_{1379}(1296,·)$, $\chi_{1379}(498,·)$, $\chi_{1379}(755,·)$, $\chi_{1379}(1373,·)$, $\chi_{1379}(986,·)$, $\chi_{1379}(1149,·)$, $\chi_{1379}(979,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{1477387} a^{12} - \frac{185587}{1477387} a^{11} - \frac{305542}{1477387} a^{10} - \frac{90908}{1477387} a^{9} - \frac{258307}{1477387} a^{8} + \frac{56637}{1477387} a^{7} + \frac{704318}{1477387} a^{6} - \frac{346360}{1477387} a^{5} + \frac{583768}{1477387} a^{4} + \frac{70375}{1477387} a^{3} - \frac{380405}{1477387} a^{2} + \frac{387111}{1477387} a - \frac{724540}{1477387}$, $\frac{1}{4395163787734732340440614162929581343101} a^{13} - \frac{261379508796657549843140270475883}{4395163787734732340440614162929581343101} a^{12} + \frac{1150970480616523361548285784248383571339}{4395163787734732340440614162929581343101} a^{11} - \frac{1889849143103183090994904035386177282679}{4395163787734732340440614162929581343101} a^{10} + \frac{1213057173100697246220696283664650065038}{4395163787734732340440614162929581343101} a^{9} - \frac{331560950835393929937887882277399261273}{4395163787734732340440614162929581343101} a^{8} - \frac{1661506887846466964690840412456315250225}{4395163787734732340440614162929581343101} a^{7} + \frac{2194715789385806079634897352129857199687}{4395163787734732340440614162929581343101} a^{6} - \frac{1594702428355500398021753697081200571593}{4395163787734732340440614162929581343101} a^{5} - \frac{1408006213925067488554893242403838221157}{4395163787734732340440614162929581343101} a^{4} + \frac{459616789480145245462981139091106607448}{4395163787734732340440614162929581343101} a^{3} + \frac{144350099514161259701503388148002222179}{4395163787734732340440614162929581343101} a^{2} + \frac{1878285448059991462608176642342332744837}{4395163787734732340440614162929581343101} a - \frac{1550854145896814334345613352376808643699}{4395163787734732340440614162929581343101}$
Class group and class number
$C_{2}\times C_{2}\times C_{6874}$, which has order $27496$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1553055.199048291 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.58451728309129.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.7.1 | $x^{14} - 117649 x^{2} + 1647086$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $197$ | 197.7.6.1 | $x^{7} - 197$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 197.7.6.1 | $x^{7} - 197$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |