Normalized defining polynomial
\( x^{14} - 4 x^{13} + 12 x^{12} - 10 x^{11} - 86 x^{10} + 63 x^{9} + 1841 x^{8} - 11168 x^{7} + 52503 x^{6} - 126275 x^{5} + 250397 x^{4} + 15948 x^{3} + 960957 x^{2} - 2208519 x + 1477683 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-28033829543340009100599839=-\,7^{7}\cdot 617^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 617$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{27} a^{8} + \frac{1}{9} a^{5} - \frac{1}{9} a^{4} + \frac{1}{9} a^{3} + \frac{2}{27} a^{2} - \frac{2}{9} a$, $\frac{1}{81} a^{9} - \frac{1}{27} a^{7} + \frac{1}{27} a^{5} - \frac{10}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{1701} a^{10} + \frac{5}{1701} a^{9} + \frac{1}{567} a^{8} + \frac{22}{567} a^{7} + \frac{25}{567} a^{6} - \frac{16}{567} a^{5} + \frac{152}{1701} a^{4} - \frac{221}{1701} a^{3} - \frac{104}{567} a^{2} - \frac{50}{189} a + \frac{3}{7}$, $\frac{1}{15309} a^{11} - \frac{2}{15309} a^{10} - \frac{32}{15309} a^{9} - \frac{2}{1701} a^{8} - \frac{64}{1701} a^{7} - \frac{2}{5103} a^{6} - \frac{457}{15309} a^{5} + \frac{1739}{15309} a^{4} + \frac{1991}{15309} a^{3} + \frac{536}{5103} a^{2} - \frac{661}{1701} a + \frac{1}{9}$, $\frac{1}{2893401} a^{12} - \frac{8}{964467} a^{11} + \frac{1}{19683} a^{10} + \frac{5330}{2893401} a^{9} + \frac{2356}{321489} a^{8} + \frac{43480}{964467} a^{7} - \frac{9049}{413343} a^{6} - \frac{6227}{137781} a^{5} - \frac{113546}{964467} a^{4} + \frac{148534}{2893401} a^{3} - \frac{478769}{964467} a^{2} - \frac{15644}{321489} a - \frac{1639}{11907}$, $\frac{1}{606461746745544631641} a^{13} - \frac{2416868883001}{606461746745544631641} a^{12} + \frac{223273669300631}{22461546175760912283} a^{11} + \frac{74357614495712789}{606461746745544631641} a^{10} - \frac{1659441539854310570}{606461746745544631641} a^{9} - \frac{2967805112501500913}{202153915581848210547} a^{8} - \frac{27914209074431552830}{606461746745544631641} a^{7} + \frac{959101357120857280}{86637392392220661663} a^{6} - \frac{3330467942912261839}{67384638527282736849} a^{5} - \frac{97199222917869401477}{606461746745544631641} a^{4} + \frac{98588235344799257462}{606461746745544631641} a^{3} - \frac{68308044265294134286}{202153915581848210547} a^{2} + \frac{14851545230317655123}{67384638527282736849} a + \frac{394957617688841098}{2495727352862323587}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 211347808.233 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-4319}) \), 7.1.80565593759.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.80565593759.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 617 | Data not computed | ||||||