Normalized defining polynomial
\( x^{14} + 6 x^{12} + 65 x^{10} + 50 x^{8} + 430 x^{6} + 575 x^{4} + 895 x^{2} + 431 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2762745569510280911=-\,431^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $431$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{11} a^{6} + \frac{1}{11} a^{4} - \frac{4}{11} a^{2} + \frac{2}{11}$, $\frac{1}{22} a^{7} + \frac{1}{22} a^{5} - \frac{2}{11} a^{3} - \frac{1}{2} a^{2} - \frac{9}{22} a - \frac{1}{2}$, $\frac{1}{22} a^{8} - \frac{1}{22} a^{6} - \frac{3}{11} a^{4} - \frac{1}{2} a^{3} - \frac{1}{22} a^{2} - \frac{1}{2} a - \frac{2}{11}$, $\frac{1}{22} a^{9} - \frac{5}{22} a^{5} - \frac{1}{2} a^{4} - \frac{5}{22} a^{3} + \frac{9}{22} a - \frac{1}{2}$, $\frac{1}{242} a^{10} + \frac{3}{242} a^{8} - \frac{2}{121} a^{6} - \frac{1}{2} a^{5} - \frac{85}{242} a^{4} - \frac{1}{2} a^{3} + \frac{50}{121} a^{2} - \frac{46}{121}$, $\frac{1}{242} a^{11} + \frac{3}{242} a^{9} - \frac{2}{121} a^{7} - \frac{1}{22} a^{6} - \frac{85}{242} a^{5} - \frac{1}{22} a^{4} + \frac{50}{121} a^{3} + \frac{2}{11} a^{2} - \frac{46}{121} a - \frac{1}{11}$, $\frac{1}{939686} a^{12} - \frac{688}{469843} a^{10} - \frac{10194}{469843} a^{8} - \frac{7157}{469843} a^{6} - \frac{1}{2} a^{5} - \frac{14963}{85426} a^{4} - \frac{74738}{469843} a^{2} - \frac{239619}{939686}$, $\frac{1}{939686} a^{13} - \frac{688}{469843} a^{11} - \frac{10194}{469843} a^{9} - \frac{7157}{469843} a^{7} - \frac{1}{22} a^{6} - \frac{14963}{85426} a^{5} + \frac{5}{11} a^{4} - \frac{74738}{469843} a^{3} + \frac{2}{11} a^{2} - \frac{239619}{939686} a - \frac{1}{11}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1508.64531505 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-431}) \), 7.1.80062991.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.80062991.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 431 | Data not computed | ||||||