Normalized defining polynomial
\( x^{14} + 61 x^{12} + 1402 x^{10} + 15247 x^{8} + 80418 x^{6} + 185798 x^{4} + 127429 x^{2} + 18769 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-268856242022659049623404544=-\,2^{14}\cdot 71^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(284=2^{2}\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{284}(1,·)$, $\chi_{284}(91,·)$, $\chi_{284}(261,·)$, $\chi_{284}(103,·)$, $\chi_{284}(233,·)$, $\chi_{284}(45,·)$, $\chi_{284}(143,·)$, $\chi_{284}(243,·)$, $\chi_{284}(245,·)$, $\chi_{284}(119,·)$, $\chi_{284}(179,·)$, $\chi_{284}(187,·)$, $\chi_{284}(37,·)$, $\chi_{284}(101,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4} - \frac{1}{5}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{25} a^{8} - \frac{2}{25} a^{4} + \frac{1}{25}$, $\frac{1}{25} a^{9} - \frac{2}{25} a^{5} + \frac{1}{25} a$, $\frac{1}{2125} a^{10} + \frac{31}{2125} a^{8} + \frac{198}{2125} a^{6} - \frac{37}{2125} a^{4} - \frac{349}{2125} a^{2} - \frac{144}{2125}$, $\frac{1}{2125} a^{11} + \frac{31}{2125} a^{9} + \frac{198}{2125} a^{7} - \frac{37}{2125} a^{5} - \frac{349}{2125} a^{3} - \frac{144}{2125} a$, $\frac{1}{3006875} a^{12} - \frac{132}{601375} a^{10} + \frac{34367}{3006875} a^{8} + \frac{23034}{601375} a^{6} + \frac{140138}{3006875} a^{4} + \frac{137623}{601375} a^{2} - \frac{1054881}{3006875}$, $\frac{1}{411941875} a^{13} - \frac{15414}{82388375} a^{11} + \frac{311707}{411941875} a^{9} - \frac{3483902}{82388375} a^{7} - \frac{34197667}{411941875} a^{5} + \frac{25196141}{82388375} a^{3} + \frac{92577084}{411941875} a$
Class group and class number
$C_{3277}$, which has order $3277$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{27589}{411941875} a^{13} - \frac{332421}{82388375} a^{11} - \frac{37496783}{411941875} a^{9} - \frac{79139288}{82388375} a^{7} - \frac{1972918042}{411941875} a^{5} - \frac{799173166}{82388375} a^{3} - \frac{1645974336}{411941875} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315114.696625 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $71$ | 71.14.12.1 | $x^{14} + 546629 x^{7} + 98234829011$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |