Normalized defining polynomial
\( x^{14} - 2 x^{13} - 17 x^{12} + 228 x^{11} - 987 x^{10} + 21 x^{9} + 18141 x^{8} - 102392 x^{7} + 301240 x^{6} - 540701 x^{5} + 872694 x^{4} - 1497260 x^{3} + 1333379 x^{2} - 531483 x + 1413721 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2665908124227273813779851559=-\,17^{7}\cdot 487^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 487$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{109} a^{11} + \frac{52}{109} a^{10} + \frac{35}{109} a^{9} + \frac{30}{109} a^{8} - \frac{25}{109} a^{7} + \frac{47}{109} a^{6} - \frac{20}{109} a^{5} - \frac{52}{109} a^{4} + \frac{38}{109} a^{3} + \frac{43}{109} a^{2} - \frac{6}{109} a - \frac{52}{109}$, $\frac{1}{2033569291} a^{12} - \frac{5013254}{2033569291} a^{11} - \frac{13416692}{119621723} a^{10} + \frac{226413069}{2033569291} a^{9} + \frac{49436814}{156428407} a^{8} - \frac{888400221}{2033569291} a^{7} - \frac{203544304}{2033569291} a^{6} + \frac{385990711}{2033569291} a^{5} + \frac{803699539}{2033569291} a^{4} - \frac{236144866}{2033569291} a^{3} + \frac{21847974}{70123079} a^{2} - \frac{198202404}{2033569291} a + \frac{829371}{1710319}$, $\frac{1}{21590916095518983525263836963} a^{13} - \frac{1879346059758540317}{21590916095518983525263836963} a^{12} - \frac{8178880976914607148596429}{21590916095518983525263836963} a^{11} - \frac{4988460896823108086136838367}{21590916095518983525263836963} a^{10} + \frac{971534463839676691493508889}{21590916095518983525263836963} a^{9} + \frac{79385951862383676457353155}{198081799041458564451961807} a^{8} - \frac{3373932454665574016426124261}{21590916095518983525263836963} a^{7} - \frac{6061949694640625152253822095}{21590916095518983525263836963} a^{6} + \frac{10792477979410107450931236866}{21590916095518983525263836963} a^{5} - \frac{6020737912457722864513999913}{21590916095518983525263836963} a^{4} + \frac{531109603288403918171258434}{1270053887971704913250813939} a^{3} + \frac{552872086149016402623956916}{21590916095518983525263836963} a^{2} - \frac{10606501131815549624166608101}{21590916095518983525263836963} a + \frac{2808485890545493547821969}{18158886539544981938825767}$
Class group and class number
$C_{18}$, which has order $18$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3283388.80428 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-8279}) \), 7.1.567457901639.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.567457901639.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 487 | Data not computed | ||||||