Normalized defining polynomial
\( x^{14} - 7 x^{13} + 49 x^{12} - 161 x^{11} + 1246 x^{10} - 5810 x^{9} + 39270 x^{8} - 153373 x^{7} + 774270 x^{6} - 2507386 x^{5} + 9634359 x^{4} - 22503019 x^{3} + 65267748 x^{2} - 95761729 x + 191861773 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-26290885243157554005466712784279=-\,3^{7}\cdot 7^{24}\cdot 13^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $175.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1911=3\cdot 7^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1911}(1,·)$, $\chi_{1911}(547,·)$, $\chi_{1911}(1093,·)$, $\chi_{1911}(1793,·)$, $\chi_{1911}(1639,·)$, $\chi_{1911}(428,·)$, $\chi_{1911}(974,·)$, $\chi_{1911}(1520,·)$, $\chi_{1911}(274,·)$, $\chi_{1911}(820,·)$, $\chi_{1911}(1366,·)$, $\chi_{1911}(155,·)$, $\chi_{1911}(701,·)$, $\chi_{1911}(1247,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{116033} a^{12} - \frac{22866}{116033} a^{11} + \frac{13817}{116033} a^{10} - \frac{38267}{116033} a^{9} - \frac{33565}{116033} a^{8} - \frac{55353}{116033} a^{7} + \frac{21450}{116033} a^{6} - \frac{42584}{116033} a^{5} - \frac{13701}{116033} a^{4} - \frac{25515}{116033} a^{3} + \frac{21431}{116033} a^{2} - \frac{44896}{116033} a + \frac{26445}{116033}$, $\frac{1}{2318873371322340420268557729193668671} a^{13} + \frac{9839117746578261848717945815524}{2318873371322340420268557729193668671} a^{12} - \frac{688479836548713289166562940612165672}{2318873371322340420268557729193668671} a^{11} + \frac{515459117299177924740965131644633752}{2318873371322340420268557729193668671} a^{10} + \frac{1112327092852066220186658584202119399}{2318873371322340420268557729193668671} a^{9} - \frac{1156097092707310134250958978878416212}{2318873371322340420268557729193668671} a^{8} - \frac{506725320741064019644028203745247378}{2318873371322340420268557729193668671} a^{7} + \frac{569581439272902426953627855392773651}{2318873371322340420268557729193668671} a^{6} - \frac{1020067841775192683247300891522374475}{2318873371322340420268557729193668671} a^{5} + \frac{995524169434591887882830928402420543}{2318873371322340420268557729193668671} a^{4} + \frac{945213681771136823360361416797093416}{2318873371322340420268557729193668671} a^{3} - \frac{136780292809947963610160261440324799}{2318873371322340420268557729193668671} a^{2} - \frac{765237890292507198326562214093985816}{2318873371322340420268557729193668671} a - \frac{343462145190031613064986919389400614}{2318873371322340420268557729193668671}$
Class group and class number
$C_{109316}$, which has order $109316$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.14.24.53 | $x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383$ | $7$ | $2$ | $24$ | $C_{14}$ | $[2]^{2}$ |
| $13$ | 13.14.7.1 | $x^{14} - 43940 x^{8} + 482680900 x^{2} - 250994068$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |