Normalized defining polynomial
\( x^{14} + 420 x^{12} - 938 x^{11} + 53977 x^{10} - 216776 x^{9} + 2635479 x^{8} - 12306090 x^{7} + 59795582 x^{6} - 220994886 x^{5} + 519273797 x^{4} - 855223397 x^{3} + 1175109670 x^{2} - 1278452721 x + 1353299719 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-261178845247250442478137475921967=-\,7^{25}\cdot 41^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $206.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2009=7^{2}\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2009}(288,·)$, $\chi_{2009}(1,·)$, $\chi_{2009}(1147,·)$, $\chi_{2009}(1436,·)$, $\chi_{2009}(1149,·)$, $\chi_{2009}(286,·)$, $\chi_{2009}(2008,·)$, $\chi_{2009}(1721,·)$, $\chi_{2009}(1434,·)$, $\chi_{2009}(1723,·)$, $\chi_{2009}(860,·)$, $\chi_{2009}(573,·)$, $\chi_{2009}(862,·)$, $\chi_{2009}(575,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{19} a^{10} + \frac{6}{19} a^{9} - \frac{2}{19} a^{8} + \frac{3}{19} a^{7} + \frac{2}{19} a^{6} + \frac{7}{19} a^{5} + \frac{3}{19} a^{4} - \frac{4}{19} a^{3} + \frac{9}{19} a^{2} + \frac{1}{19} a$, $\frac{1}{19} a^{11} - \frac{4}{19} a^{8} + \frac{3}{19} a^{7} - \frac{5}{19} a^{6} - \frac{1}{19} a^{5} - \frac{3}{19} a^{4} - \frac{5}{19} a^{3} + \frac{4}{19} a^{2} - \frac{6}{19} a$, $\frac{1}{19} a^{12} - \frac{4}{19} a^{9} + \frac{3}{19} a^{8} - \frac{5}{19} a^{7} - \frac{1}{19} a^{6} - \frac{3}{19} a^{5} - \frac{5}{19} a^{4} + \frac{4}{19} a^{3} - \frac{6}{19} a^{2}$, $\frac{1}{438736019189971475287379338577071474654235652460828629277919} a^{13} + \frac{5283642533699376598321981523144636068227067238158914586035}{438736019189971475287379338577071474654235652460828629277919} a^{12} + \frac{2917160233479656827276092021003440273438694482745643856559}{438736019189971475287379338577071474654235652460828629277919} a^{11} - \frac{10650563296387303251672684462196571457778458673782254530391}{438736019189971475287379338577071474654235652460828629277919} a^{10} + \frac{5343470449082921458541072452617167910570732514792199993545}{23091369431051130278283123083003761823907139603201506804101} a^{9} - \frac{128038249894492741137912741064581859487865838177402935600703}{438736019189971475287379338577071474654235652460828629277919} a^{8} + \frac{89107900244056845668570295540025018791370801996488808157646}{438736019189971475287379338577071474654235652460828629277919} a^{7} + \frac{114923256777164869644699769663090071858084633772644567621628}{438736019189971475287379338577071474654235652460828629277919} a^{6} + \frac{207606452493231248923601236128567964816908237728472142870026}{438736019189971475287379338577071474654235652460828629277919} a^{5} - \frac{140697263157451101964490619216748744367631226600848398039253}{438736019189971475287379338577071474654235652460828629277919} a^{4} + \frac{212710937949017818034495859623342318284837731872843243568126}{438736019189971475287379338577071474654235652460828629277919} a^{3} - \frac{176494513727759747654943967437683086411517931450281113219032}{438736019189971475287379338577071474654235652460828629277919} a^{2} - \frac{167906527126991077827288211889431963205233473695284811621847}{438736019189971475287379338577071474654235652460828629277919} a + \frac{11285512490088906031508774375398108703124710855494760595322}{23091369431051130278283123083003761823907139603201506804101}$
Class group and class number
$C_{842506}$, which has order $842506$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-287}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.75 | $x^{14} + 112 x^{13} + 28 x^{12} - 98 x^{11} + 147 x^{10} + 98 x^{9} + 49 x^{8} - 161 x^{7} + 49 x^{6} + 147 x^{5} + 147 x^{2} - 147 x - 126$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $41$ | 41.14.7.2 | $x^{14} - 14250312723 x^{2} + 1363279917167$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |