Normalized defining polynomial
\( x^{14} - 5 x^{13} + 36 x^{12} - 165 x^{11} + 1160 x^{10} - 2707 x^{9} + 22811 x^{8} - 27219 x^{7} + 328903 x^{6} - 89140 x^{5} + 3204020 x^{4} + 602378 x^{3} + 19889249 x^{2} + 7744478 x + 58736881 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2570974548880469840391308046875=-\,5^{7}\cdot 7^{7}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $148.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1505=5\cdot 7\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1505}(1,·)$, $\chi_{1505}(944,·)$, $\chi_{1505}(489,·)$, $\chi_{1505}(876,·)$, $\chi_{1505}(1294,·)$, $\chi_{1505}(176,·)$, $\chi_{1505}(594,·)$, $\chi_{1505}(1331,·)$, $\chi_{1505}(981,·)$, $\chi_{1505}(279,·)$, $\chi_{1505}(666,·)$, $\chi_{1505}(699,·)$, $\chi_{1505}(1086,·)$, $\chi_{1505}(1119,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{9} + \frac{2}{7} a^{8} + \frac{2}{7} a^{7} - \frac{2}{7} a^{6} - \frac{3}{7} a^{5} + \frac{1}{7} a^{4} - \frac{1}{7} a^{3} + \frac{2}{7} a^{2}$, $\frac{1}{7} a^{11} + \frac{1}{7} a^{9} - \frac{3}{7} a^{8} + \frac{2}{7} a^{6} - \frac{2}{7} a^{5} + \frac{1}{7} a^{3} + \frac{2}{7} a^{2}$, $\frac{1}{3871} a^{12} - \frac{276}{3871} a^{11} - \frac{11}{3871} a^{10} - \frac{43}{3871} a^{9} + \frac{1056}{3871} a^{8} + \frac{1784}{3871} a^{7} - \frac{1664}{3871} a^{6} - \frac{179}{553} a^{5} + \frac{1382}{3871} a^{4} + \frac{844}{3871} a^{3} - \frac{303}{3871} a^{2} + \frac{225}{553} a - \frac{216}{553}$, $\frac{1}{854850487169014583419643313527041} a^{13} + \frac{27792647679646175619844414720}{854850487169014583419643313527041} a^{12} - \frac{15454560501976630094003142251417}{854850487169014583419643313527041} a^{11} - \frac{15433940142791307767970747344879}{854850487169014583419643313527041} a^{10} - \frac{52698039885838686865648844998961}{122121498167002083345663330503863} a^{9} - \frac{3859198281457626836347983016532}{17445928309571726192237618643409} a^{8} - \frac{61363465433871805245036996274019}{854850487169014583419643313527041} a^{7} + \frac{171715375658263338341181437471585}{854850487169014583419643313527041} a^{6} + \frac{237238520887200349706348885140845}{854850487169014583419643313527041} a^{5} + \frac{357698445908724224035496842182442}{854850487169014583419643313527041} a^{4} + \frac{316993035711987590065956564032343}{854850487169014583419643313527041} a^{3} - \frac{31586472827178466988674791505211}{854850487169014583419643313527041} a^{2} - \frac{7109720654580281543676301233591}{17445928309571726192237618643409} a - \frac{4990488867841665960146584855815}{122121498167002083345663330503863}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{1486}$, which has order $95104$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35991.64185055774 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-35}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | R | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.14.7.2 | $x^{14} - 15625 x^{2} + 156250$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $43$ | 43.14.12.1 | $x^{14} + 3569 x^{7} + 4043763$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |