Normalized defining polynomial
\( x^{14} - 7 x^{13} + 35 x^{12} - 119 x^{11} + 329 x^{10} - 721 x^{9} + 1337 x^{8} + 355 x^{7} - 5726 x^{6} - 78484 x^{5} + 212632 x^{4} + 40096 x^{3} - 276080 x^{2} + 75152 x + 1455728 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2523048836405617863000000000000=-\,2^{12}\cdot 3^{12}\cdot 5^{12}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $148.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{14} a^{7} - \frac{1}{2} a^{3} + \frac{3}{7}$, $\frac{1}{140} a^{8} - \frac{1}{35} a^{7} + \frac{1}{10} a^{6} - \frac{1}{5} a^{5} - \frac{3}{20} a^{4} - \frac{2}{5} a^{3} - \frac{1}{10} a^{2} + \frac{12}{35} a - \frac{6}{35}$, $\frac{1}{140} a^{9} - \frac{1}{70} a^{7} + \frac{1}{5} a^{6} + \frac{1}{20} a^{5} + \frac{3}{10} a^{3} - \frac{2}{35} a^{2} + \frac{1}{5} a + \frac{11}{35}$, $\frac{1}{140} a^{10} - \frac{1}{4} a^{6} + \frac{1}{10} a^{5} - \frac{5}{14} a^{3} - \frac{1}{2} a^{2} - \frac{1}{5}$, $\frac{1}{980} a^{11} + \frac{3}{980} a^{10} - \frac{1}{980} a^{9} + \frac{3}{980} a^{8} + \frac{3}{196} a^{7} - \frac{11}{140} a^{6} + \frac{3}{140} a^{5} - \frac{183}{980} a^{4} + \frac{17}{49} a^{3} - \frac{157}{490} a^{2} - \frac{13}{245} a + \frac{22}{49}$, $\frac{1}{1960} a^{12} - \frac{3}{1960} a^{10} + \frac{3}{980} a^{9} - \frac{1}{1960} a^{8} - \frac{3}{245} a^{7} + \frac{57}{280} a^{6} - \frac{221}{980} a^{5} + \frac{1}{35} a^{4} + \frac{167}{490} a^{3} - \frac{243}{490} a^{2} - \frac{18}{49} a - \frac{116}{245}$, $\frac{1}{18505507015664006784040} a^{13} - \frac{3384643915717365151}{18505507015664006784040} a^{12} + \frac{8197959353850922219}{18505507015664006784040} a^{11} + \frac{9713245663503004775}{3701101403132801356808} a^{10} - \frac{22720868507802259309}{18505507015664006784040} a^{9} - \frac{33985216290722843299}{18505507015664006784040} a^{8} + \frac{69616162499235730621}{18505507015664006784040} a^{7} + \frac{437288523842181383077}{18505507015664006784040} a^{6} - \frac{585878468634889964071}{4626376753916001696010} a^{5} - \frac{2089541699216947091321}{9252753507832003392020} a^{4} + \frac{181519229046313272404}{2313188376958000848005} a^{3} + \frac{607455728931398595473}{4626376753916001696010} a^{2} + \frac{223905874224576490204}{2313188376958000848005} a - \frac{975020100803981193638}{2313188376958000848005}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1187793284.646849 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 42 |
| The 7 conjugacy class representatives for $F_7$ |
| Character table for $F_7$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.1.600362847000000.17 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 7 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| $3$ | 3.14.12.1 | $x^{14} - 3 x^{7} + 18$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ |
| $5$ | 5.14.12.1 | $x^{14} - 5 x^{7} + 50$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ |
| $7$ | 7.14.15.5 | $x^{14} - 21 x^{13} + 7 x^{12} + 14 x^{11} - 21 x^{9} + 7 x^{7} + 14 x^{6} - 21 x^{4} + 14 x^{3} + 7 x^{2} + 14$ | $14$ | $1$ | $15$ | $F_7$ | $[7/6]_{6}$ |