Normalized defining polynomial
\( x^{14} - x^{13} + 23 x^{12} - 277 x^{11} - 5095 x^{10} + 31737 x^{9} + 490605 x^{8} - 1444591 x^{7} - 15658566 x^{6} + 26925836 x^{5} + 243943976 x^{4} - 414082048 x^{3} - 2583896960 x^{2} + 4799748096 x + 20455038976 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2514094918068134291976760322363658391=-\,631^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $398.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $631$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(631\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{631}(1,·)$, $\chi_{631}(610,·)$, $\chi_{631}(133,·)$, $\chi_{631}(362,·)$, $\chi_{631}(427,·)$, $\chi_{631}(204,·)$, $\chi_{631}(269,·)$, $\chi_{631}(190,·)$, $\chi_{631}(498,·)$, $\chi_{631}(21,·)$, $\chi_{631}(630,·)$, $\chi_{631}(441,·)$, $\chi_{631}(601,·)$, $\chi_{631}(30,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{32} a^{7} - \frac{1}{32} a^{6} - \frac{1}{32} a^{5} + \frac{1}{32} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{128} a^{8} - \frac{1}{64} a^{6} + \frac{1}{32} a^{5} + \frac{5}{128} a^{4} - \frac{5}{32} a^{3} + \frac{7}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{256} a^{9} - \frac{1}{256} a^{8} - \frac{1}{128} a^{7} + \frac{3}{128} a^{6} + \frac{1}{256} a^{5} + \frac{7}{256} a^{4} - \frac{1}{16} a^{3} + \frac{13}{64} a^{2} + \frac{5}{16} a - \frac{1}{2}$, $\frac{1}{1024} a^{10} + \frac{1}{1024} a^{9} - \frac{1}{256} a^{8} + \frac{1}{512} a^{7} - \frac{19}{1024} a^{6} - \frac{55}{1024} a^{5} + \frac{15}{512} a^{4} + \frac{21}{256} a^{3} + \frac{23}{128} a^{2} + \frac{1}{32} a - \frac{1}{4}$, $\frac{1}{88064} a^{11} - \frac{13}{88064} a^{10} + \frac{23}{44032} a^{9} - \frac{139}{44032} a^{8} - \frac{303}{88064} a^{7} + \frac{2163}{88064} a^{6} + \frac{149}{2752} a^{5} - \frac{15}{2752} a^{4} + \frac{115}{2752} a^{3} + \frac{1029}{5504} a^{2} + \frac{81}{1376} a - \frac{41}{172}$, $\frac{1}{1937408} a^{12} + \frac{3}{968704} a^{11} + \frac{573}{1937408} a^{10} + \frac{685}{968704} a^{9} + \frac{6455}{1937408} a^{8} - \frac{93}{88064} a^{7} + \frac{22903}{1937408} a^{6} + \frac{10011}{968704} a^{5} - \frac{17915}{484352} a^{4} - \frac{60195}{242176} a^{3} - \frac{287}{7568} a^{2} + \frac{1831}{15136} a - \frac{153}{1892}$, $\frac{1}{6123513831409419146435989705427935232} a^{13} - \frac{124454882077837171050493447589}{3061756915704709573217994852713967616} a^{12} - \frac{8718210589619538333698340597625}{6123513831409419146435989705427935232} a^{11} - \frac{417156496869483883571647556875233}{1530878457852354786608997426356983808} a^{10} - \frac{9185633424947080590090237900843369}{6123513831409419146435989705427935232} a^{9} + \frac{682997554554130226613893187852899}{3061756915704709573217994852713967616} a^{8} - \frac{66570372879812017014232146740279031}{6123513831409419146435989705427935232} a^{7} - \frac{20340649685717436504813889464663747}{765439228926177393304498713178491904} a^{6} + \frac{5857032046593639206890238534281169}{765439228926177393304498713178491904} a^{5} - \frac{10646463018615804533457252783210855}{191359807231544348326124678294622976} a^{4} + \frac{6945716498885229009714026060032765}{382719614463088696652249356589245952} a^{3} - \frac{5422659242393065933047866012793481}{47839951807886087081531169573655744} a^{2} + \frac{8046467514383735268566203463152199}{23919975903943043540765584786827872} a + \frac{686473150752317730123885105434675}{2989996987992880442595698098353484}$
Class group and class number
$C_{3108937}$, which has order $3108937$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10178543858.108408 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-631}) \), 7.7.63121332085847281.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 631 | Data not computed | ||||||