Normalized defining polynomial
\( x^{14} - 7 x^{13} + 35 x^{12} - 119 x^{11} + 329 x^{10} - 721 x^{9} + 1337 x^{8} + 4483 x^{7} - 20174 x^{6} - 208516 x^{5} + 573832 x^{4} + 112336 x^{3} - 752864 x^{2} + 205184 x + 10696256 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2507728416978832844027390843056128=-\,2^{12}\cdot 3^{12}\cdot 7^{11}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $243.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{28} a^{6} - \frac{5}{28} a^{5} - \frac{3}{28} a^{4} + \frac{1}{28} a^{3} + \frac{1}{14} a^{2} + \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{28} a^{7} + \frac{1}{4} a^{3} + \frac{3}{7}$, $\frac{1}{56} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{2}{7} a$, $\frac{1}{56} a^{9} - \frac{1}{8} a^{5} + \frac{1}{4} a^{3} - \frac{2}{7} a^{2}$, $\frac{1}{784} a^{10} + \frac{1}{784} a^{9} - \frac{1}{392} a^{8} + \frac{3}{392} a^{7} - \frac{1}{112} a^{6} + \frac{23}{112} a^{5} - \frac{1}{7} a^{4} + \frac{19}{98} a^{3} + \frac{33}{98} a^{2} - \frac{5}{49} a + \frac{15}{49}$, $\frac{1}{784} a^{11} - \frac{3}{784} a^{9} - \frac{3}{392} a^{8} - \frac{13}{784} a^{7} - \frac{3}{112} a^{5} - \frac{57}{392} a^{4} - \frac{9}{28} a^{3} + \frac{13}{98} a^{2} - \frac{8}{49} a - \frac{1}{49}$, $\frac{1}{1568} a^{12} - \frac{1}{1568} a^{10} + \frac{5}{784} a^{9} + \frac{11}{1568} a^{8} + \frac{3}{392} a^{7} - \frac{1}{224} a^{6} + \frac{181}{784} a^{5} + \frac{1}{56} a^{4} - \frac{17}{49} a^{3} - \frac{5}{49} a^{2} - \frac{16}{49} a + \frac{22}{49}$, $\frac{1}{828365542850185721696224} a^{13} + \frac{6255158098967338919}{25886423214068303803007} a^{12} - \frac{5098841514603254279}{63720426373091209361248} a^{11} + \frac{9053013843404975547}{414182771425092860848112} a^{10} + \frac{309749869106335032759}{118337934692883674528032} a^{9} - \frac{383972888886500382075}{207091385712546430424056} a^{8} - \frac{12353313277205440570509}{828365542850185721696224} a^{7} + \frac{1565440354183262073383}{414182771425092860848112} a^{6} - \frac{3705664974379814430225}{31860213186545604680624} a^{5} - \frac{10243113540128950549763}{103545692856273215212028} a^{4} + \frac{925883339603441690224}{1991263324159100292539} a^{3} + \frac{141690205141302981736}{3698060459152614829001} a^{2} + \frac{8998217173912796971578}{25886423214068303803007} a - \frac{9541230730754641943201}{25886423214068303803007}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 335473003203.79584 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 42 |
| The 7 conjugacy class representatives for $F_7$ |
| Character table for $F_7$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.1.18927411780570048.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 7 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| $3$ | 3.14.12.1 | $x^{14} - 3 x^{7} + 18$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $17$ | 17.14.12.1 | $x^{14} - 17 x^{7} + 867$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ |