Normalized defining polynomial
\( x^{14} - 7 x^{12} - 42 x^{11} + 308 x^{10} + 896 x^{9} + 3871 x^{8} + 6260 x^{7} + 57890 x^{6} + 141946 x^{5} + 509600 x^{4} + 789740 x^{3} + 2839473 x^{2} + 4042276 x + 8465729 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-245223976167125010433280000000=-\,2^{14}\cdot 5^{7}\cdot 7^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $125.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(980=2^{2}\cdot 5\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{980}(1,·)$, $\chi_{980}(99,·)$, $\chi_{980}(421,·)$, $\chi_{980}(519,·)$, $\chi_{980}(841,·)$, $\chi_{980}(939,·)$, $\chi_{980}(141,·)$, $\chi_{980}(239,·)$, $\chi_{980}(561,·)$, $\chi_{980}(659,·)$, $\chi_{980}(281,·)$, $\chi_{980}(379,·)$, $\chi_{980}(701,·)$, $\chi_{980}(799,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{39463} a^{12} - \frac{19548}{39463} a^{11} + \frac{11143}{39463} a^{10} - \frac{11394}{39463} a^{9} - \frac{9301}{39463} a^{8} - \frac{18301}{39463} a^{7} - \frac{30}{39463} a^{6} - \frac{717}{39463} a^{5} + \frac{10043}{39463} a^{4} + \frac{9907}{39463} a^{3} + \frac{311}{39463} a^{2} + \frac{4091}{39463} a + \frac{9167}{39463}$, $\frac{1}{222028717935240253644269531168347} a^{13} - \frac{2669292850442739937512379798}{222028717935240253644269531168347} a^{12} - \frac{7996573688779038219648721506316}{222028717935240253644269531168347} a^{11} - \frac{2573258991607566550971948384259}{11685721996591592297066817429913} a^{10} - \frac{23129810380436648605440688065802}{222028717935240253644269531168347} a^{9} + \frac{94817629350432100649963525484052}{222028717935240253644269531168347} a^{8} + \frac{14289785206100338697430777065527}{222028717935240253644269531168347} a^{7} - \frac{4516813129380524842146056019867}{222028717935240253644269531168347} a^{6} - \frac{39740391137492939684134372916890}{222028717935240253644269531168347} a^{5} + \frac{44136859977047325930055911498493}{222028717935240253644269531168347} a^{4} - \frac{94483881377489672459527030344409}{222028717935240253644269531168347} a^{3} + \frac{2388538133632943227686054018392}{7162216707588395278847404231237} a^{2} - \frac{75252139591614960377011705340606}{222028717935240253644269531168347} a + \frac{67231414094871997594327390805240}{222028717935240253644269531168347}$
Class group and class number
$C_{13538}$, which has order $13538$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | R | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.15 | $x^{14} + 2 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $5$ | 5.14.7.1 | $x^{14} - 250 x^{8} + 15625 x^{2} - 312500$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |
| 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |